Where Are We in the Evolution to Software 2.0?
April 09, 2020

Glenn Gruber
Anexinet

A recent MIT/BCG study revealed that 84% surveyed feel AI is critical to obtain or sustain competitive advantage, and three out of four surveyed believe that Machine Learning provides an opportunity to enter new businesses and that AI will be the basis for new entrants into their industry. Which shouldn't come as a surprise to anyone, seeing as how advances in GPU/TPU technology, and the development of new platforms and frameworks have enabled an explosion in AI and Machine Learning, while new platforms from Amazon, Microsoft and others have put pre-built frameworks firmly in the grasp of developers. Despite all this movement, however, we are still definitely very early in the transition to using AI to transform software development — commonly referred to as Software 2.0, or AIOps. 

Tesla is one shining example that emphasizes how early we are, and just how much expertise is required in an organization in order for the enterprise to gain the level of maturity necessary to take on this advanced, yet still esoteric, technology. Tesla uses computer vision, and other Machine Learning algorithms, to enable their vehicles to make literally thousands of decisions a millisecond. Most companies don't have anywhere near the comparable expertise in Artificial Intelligence and/or Machine Learning to take on this level of complexity on their own. But we remain optimistic, since Tesla's success thus far does inform what's possible in the near future.
 
The difficulty inherent in the transformation of DevOps to AIOps is that the two methodologies are not even close to being the same thing. Algorithmia, a company intent on "building the future of Machine Learning infrastructure," is one other organization that has already developed a flagship DevOps platform for AI. This tweet from Diego Oppenheimer, CEO/founder of Algorithmia, (quoting Mike Anderson, also of Algorithmia) illustrates what I mean when I say DevOps and AIOps are not one and the same: "Expecting your engineering and DevOps teams to deploy ML models well is like showing up to Seaworld with a giraffe, since they are already handling large mammals."
 
The low-code Lego models may be faster, but that doesn't mean they are optimized or efficient when you piece all the Legos together into a full-blown application. Though over time it's possible these components will improve. Some of the advantages of this approach can also be achieved (but perhaps without the continuous improvement of evaluating the quality of the code) through Reusable Component Libraries.
 
Many companies that may be eager to start down on the AI path will necessarily be relying on those familiar platform providers that are immediately available to them to improve/optimize code — such as the Microsoft Intellicode. We've also seen Apple launch SwiftUI, CreateML, and Reality Composer — all products aimed at reducing the coding effort as well as a significant investment in Swift (a far more efficient and declarative syntax that intrinsically requires less code) and the underlying ML and AR frameworks to pull it off. But like the Microsoft example, this is being led by the platform providers.

Glenn Gruber is a Senior Digital Strategist at Anexinet
Share this

Industry News

October 02, 2023

Spectro Cloud announced Palette EdgeAI to simplify how organizations deploy and manage AI workloads at scale across simple to complex edge locations, such as retail, healthcare, industrial automation, oil and gas, automotive/connected cars, and more.

September 28, 2023

Kong announced Kong Konnect Dedicated Cloud Gateways, the simplest and most cost-effective way to run Kong Gateways in the cloud fully managed as a service and on enterprise dedicated infrastructure.

September 28, 2023

Sisense unveiled the public preview of Compose SDK for Fusion.

September 28, 2023

Cloudflare announced Hyperdrive to make every local database global. Now developers can easily build globally distributed applications on Cloudflare Workers, the serverless developer platform used by over one million developers, without being constrained by their existing infrastructure.

September 27, 2023

Kong announced full support for Kong Mesh in Konnect, making Kong Konnect an API lifecycle management platform with built-in support for Kong Gateway Enterprise, Kong Ingress Controller and Kong Mesh via a SaaS control plane.

September 27, 2023

Vultr announced the launch of the Vultr GPU Stack and Container Registry to enable global enterprises and digital startups alike to build, test and operationalize artificial intelligence (AI) models at scale — across any region on the globe. \

September 27, 2023

Salt Security expanded its partnership with CrowdStrike by integrating the Salt Security API Protection Platform with the CrowdStrike Falcon® Platform.

September 26, 2023

Progress announced a partnership with Software Improvement Group (SIG), an independent technology and advisory firm for software quality, security and improvement, to help ensure the long-term maintainability and modernization of business-critical applications built on the Progress® OpenEdge® platform.

September 26, 2023

Solace announced a new version of its Solace Event Portal solution that gives organizations with Apache Kafka deployments better visibility into, and control over, their Kafka event streams, brokers and associated assets.

September 26, 2023

Reply launched a proprietary framework for generative AI-based software development, KICODE Reply.

September 26, 2023

Harness announced the industry-wide Engineering Excellence Collective™, an engineering leadership community.

September 25, 2023

Harness announced four new product modules on the Harness platform.

September 25, 2023

Sylabs announced the release of SingularityCE 4.0.

September 25, 2023

Timescale announced the launch of Timescale Vector, enabling developers to build production AI applications at scale with PostgreSQL.