Why Enterprises Must Add Application Hardening to Their DevSecOps Strategy
July 31, 2023

Wing To
Digital.ai

As the volume, development velocity, and variety of applications and their attack vectors skyrocket, it's time to rethink how we use application hardening. Application hardening, also known as "application shielding" and "in-app protection," protects live applications from reverse engineering and tampering.

Application hardening isn't just for mobile applications anymore but is emerging as a standard way of protecting desktop and web applications across industries and for a good reason. Bringing application hardening into a comprehensive DevSecOps strategy will help enterprises overcome secure coding skills gaps and better enable developer teams to deliver higher quality applications faster to meet the demands of today's environment.

By 2025, IDC predicts that 750 million discrete applications will be released worldwide, up from roughly 195 million in 2021 (The Need for Application Hardening as Part of a Holistic DevSecOps Strategy, May 2023). With more applications being accessed from the growing variety of devices and platforms, the attack surface continues to expand. At the same time, cybercriminals keep finding new ways to exploit vulnerabilities, even in securely coded applications via reverse engineering and tampering techniques.

Unsurprisingly, application development velocity keeps increasing, given the popularity of DevOps practices and innovative developer tools powered by automation and AI to speed up dev cycles. IDC expects 70% of large organizations will have the means to release daily code in production by 2025, up from a meager 5% in 2021.

Now companies are integrating DevSecOps technologies with DevOps processes to make security best practices part of the developer's responsibilities. In reality, many developers need more secure coding experience and help to keep up with the shifting threat landscape. Application hardening helps fill these gaps.


Source: IDC, 2023

The following are benefits of application hardening as part of DevSecOps

Improved build-time security posture without burdening developers

Code obfuscation is the most common type of build-time application hardening. It is the process of making code difficult for humans or machines to understand while retaining the integrity and behavior of the application. This process can be automated so more secure applications are released without requiring developers to be security experts. The best obfuscation solutions are regularly updating and releasing new techniques to prevent deobfuscation and reverse engineering.

Visibility into potential attacks of applications in production

Application tampering is the unsanctioned use of an application in a way not intended or authorized by the organization. Tampering happens after an application is released, and unless production monitoring is in place, the organization cannot detect it. Tampering is a growing problem that has led to data breaches, financial and reputational losses, and legal liabilities.

Tampering detection uncovers application and user behavior that signals an application is being messed with. For instance, a threat actor could use a debugger to reverse engineer an application for malicious intent. Device fingerprinting can provide insight into how a user connects to an application to understand behavior better. When alerted to tampering, enterprises receive detailed visibility into information such as the device, operating system, browser, IP address, and geographic location.

Real-time mitigation of attacks from known and unknown threats

While Web application firewalls (WAF) are used to protect Internet-based applications, they analyze the traffic to and from an application but are blind to data within applications. According to Kaspersky, public-facing web apps are the leading attack vector cybercriminals use to penetrate an organization's perimeter.

Application hardening should be integrated into DevOps workflows. Enterprises that take this approach can ensure that nonhardened applications are not released without security protections — for example, through coordination of release orchestration with an Open Policy Agent (OPA).

Application hardening also needs to encompass application monitoring and runtime application self-protection (RASP), which enables applications to detect tampering and automatically respond if tampering is detected. RASP security offers real-time threat detection by looking at both the application and analyzing the context of events causing the current behavior of the application. With this visibility into an application's logic and data flow, RASP can trigger automatic, customizable actions in response to unexpected behavior, offering greater attack protection of applications in production.

When considering an application hardening solution, enterprises should identify solutions that incorporate tamper detections, code obfuscations, and RASP with customizable event responses. Additionally, any solution should integrate with DevOps and DevSecOps workflows and allow for proper governance and compliance checks. Finally, solutions that are open-architecture and allow for heterogeneous toolsets will provide the most flexibility as they are incorporated into workflows.

Wing To is VP of Engineering for Value Stream Delivery Platform & DevOps at Digital.ai
Share this

Industry News

April 25, 2024

JFrog announced a new machine learning (ML) lifecycle integration between JFrog Artifactory and MLflow, an open source software platform originally developed by Databricks.

April 25, 2024

Copado announced the general availability of Test Copilot, the AI-powered test creation assistant.

April 25, 2024

SmartBear has added no-code test automation powered by GenAI to its Zephyr Scale, the solution that delivers scalable, performant test management inside Jira.

April 24, 2024

Opsera announced that two new patents have been issued for its Unified DevOps Platform, now totaling nine patents issued for the cloud-native DevOps Platform.

April 23, 2024

mabl announced the addition of mobile application testing to its platform.

April 23, 2024

Spectro Cloud announced the achievement of a new Amazon Web Services (AWS) Competency designation.

April 22, 2024

GitLab announced the general availability of GitLab Duo Chat.

April 18, 2024

SmartBear announced a new version of its API design and documentation tool, SwaggerHub, integrating Stoplight’s API open source tools.

April 18, 2024

Red Hat announced updates to Red Hat Trusted Software Supply Chain.

April 18, 2024

Tricentis announced the latest update to the company’s AI offerings with the launch of Tricentis Copilot, a suite of solutions leveraging generative AI to enhance productivity throughout the entire testing lifecycle.

April 17, 2024

CIQ launched fully supported, upstream stable kernels for Rocky Linux via the CIQ Enterprise Linux Platform, providing enhanced performance, hardware compatibility and security.

April 17, 2024

Redgate launched an enterprise version of its database monitoring tool, providing a range of new features to address the challenges of scale and complexity faced by larger organizations.

April 17, 2024

Snyk announced the expansion of its current partnership with Google Cloud to advance secure code generated by Google Cloud’s generative-AI-powered collaborator service, Gemini Code Assist.

April 16, 2024

Kong announced the commercial availability of Kong Konnect Dedicated Cloud Gateways on Amazon Web Services (AWS).

April 16, 2024

Pegasystems announced the general availability of Pega Infinity ’24.1™.