5 Solutions to Boost Kubernetes in 5G Deployments
July 13, 2021

Roopak Parikh
Platform9

5G mobile broadband network operators encounter challenges on a number of various levels due to the nature of their large-scale, complex, dynamic, and highly distributed infrastructure requirements. There are many requirements for managing 5G services ranging from radio tower and network operations, to managing multi-layer software applications, to meeting strict specifications for latency and network performance of their applications and infrastructure. And lastly, operators require flexibility to relocate services motivated by performance optimization and increasing operational efficiencies.

The 5G architectures need to be services-based with hundreds and thousands of network services in the form of VNFs (Virtual Network Functions) or CNFs (Container Network Functions) that are deployed in geographically distributed remote environments.

Kubernetes is able to tackle a portion of this challenge by managing CNFs, however it does have several limitations in terms of managing 5G services across distributed locations with stringent latency and performance requirements.

Let us take a closer look into the top five technical considerations and how to best optimize Kubernetes for 5G deployments.

1. Virtual Networking Functions (VNFs) and Container Network Functions (CNFs) must coexist

By 2024, 5G is expected to handle 25 percent of all mobile traffic which will, in turn, drive faster adoption and deployment of CNF's. But, because a vast majority of current networks still continue to rely on VNFs, VNFs and CNFs must be co-managed. This can create inefficient and expensive siloed management of VNFs, CNFs and 5G sites.

A smart solution to addressing these inefficiencies is to run both VNFs and CNFs deploying Kubernetes as the infrastructure control fabric, which functions as the VIM layer in the MANO stack. Using KubeVirt, an open-source project that enables VMs to be managed by Kubernetes alongside containers, operators can standardize on the Kubernetes VIM layer eliminating the operational silos. This eliminates the need to port all of the applications to containers or managing two entirely separate stacks — the best of both worlds.

2. 5G telco operators running large environments with combinations of bare metal, VNFs, and CNFs need a simpler, self-service, automated, remote operating model.

Bare metal orchestration requires manual steps and increases the likelihood of errors. A large-scale 5G network roll-out involves thousands of access layer sites, hundreds of aggregate sites, and possibly dozens of core data centers. All of these sites have bare-metal servers. The sheer quantity of manual steps involved, the complexity of prerequisite knowledge required, and the risks associated with server downtime, and the large number of 5G sites, make it difficult to manage and operate bare metal servers efficiently. Consider partnering with a platform provider that brings cloud agility to bare metal infrastructure providing a centralized pane of management for all distributed 5G locations.

3. Configuring and operating high-performance networking options, a necessity for 5G deployments, is difficult

IPv6 is a must-have for 5G deployments as the current IPv4 standard does not offer sufficient IP addresses as the number of endpoints from mobile devices, IoT sensors and nodes that 5G will interconnect will exceed billions in the next few years. Find automated ways to remotely configure and customize advanced networking settings.

4. Latency sensitive CNFs do not support standard resource scheduling

Latency-critical CNFs need guaranteed access to CPU, memory, and network resources. Pod scheduling algorithms in Kubernetes are based on enabling efficient CPU resource utilization and multi-tasking. However, the negative consequence of this is non-deterministic performance, making it unsuitable for latency-sensitive CNFs. A solution to this problem is to “isolate” or “pin” a CPU core or a set of CPU cores such that the scheduler can provide pods exclusive access to those CPU resources, resulting in more deterministic behavior and ability to meet latency requirements.

5. Consistent, central management of 5G sites is key to success

It's difficult to deploy, manage, and upgrade hundreds or thousands of distributed 5G sites that need to be managed with low or no touch. Each 5G site, such as radio towers, access layer, or core data centers runs its own worker nodes and containers. Additionally, troubleshooting issues and keeping all the services up to date is an ongoing operational nightmare, especially when there are hundreds of these services deployed at each site.

Look to solutions providers who can provide a single sign-on for distributed infrastructure locations; cluster profiles to ensure consistency of deployment across large number of clusters and customers; centralized management of tooling, APIs, and app catalog to simplify application management at scale; and lastly, cluster monitoring and fully-automated Day-2 operations such as upgrades, security patching, and troubleshooting.

While some of these considerations pose challenges in the short-term, with the right infrastructure and approach Kubernetes can be integral to building successful 5G implementations.

Roopak Parikh is Co-Founder and CTO of Platform9
Share this

Industry News

January 26, 2023

Ubuntu Pro, Canonical’s comprehensive subscription for secure open source and compliance, is now generally available.

January 26, 2023

Mirantis, freeing developers to create their most valuable code, today announced that it has acquired the Santa Clara, California-based Shipa to add automated application discovery, operations, security, and observability to the Lens Kubernetes Platform.

January 25, 2023

SmartBear has integrated the powerful contract testing capabilities of PactFlow with SwaggerHub.

January 25, 2023

Venafi introduced TLS Protect for Kubernetes.

January 25, 2023

Tricentis announced the general availability of Tricentis Test Automation, a cloud-based test automation solution that simplifies test creation, orchestration, and scalable test execution for easier collaboration among QA teams and their business stakeholders and faster, higher-quality, and more durable releases of web-based applications and business processes.

January 24, 2023

Harness announced the acquisition of Propelo.

January 23, 2023

Couchbase announced its Couchbase Capella Database-as-a-Service (DBaaS) offering on Azure.

January 23, 2023

Mendix and Software Improvement Group (SIG) have announced the release of Mendix Quality & Security Management (QSM), a new cybersecurity solution that provides continuous deep-dive insights into security and code quality to immediately address risks and vulnerabilities.

January 23, 2023

Trunk announces the public launch of CI Analytics.

January 23, 2023

Panaya announced a new Partnership Program in response to ongoing growth within its partner network over the past year.

January 23, 2023

Cloudian closed $60 million in new funding, bringing the company’s total funding to $233 million.

January 19, 2023

Progress announced the R1 2023 release of Progress Telerik and Progress Kendo UI.

January 19, 2023

Wallarm announced the early release of the Wallarm API Leak Management solution, an enhanced API security technology designed to help organizations identify and remediate attacks exploiting leaked API keys and secrets, while providing on-going protection against hacks in the event of a leak.

January 19, 2023

ThreatModeler launched Threat Model Marketplace, a cybersecurity asset marketplace offering pre-built, field-tested threat models to be downloaded — free for a limited time — and incorporated into new and ongoing threat modeling initiatives.

January 18, 2023

Software AG has launched new updates to its webMethods platform that will simplify the process by which developers can find, work on and deploy new APIs and integration tools or capabilities.