Navigating the Complexities of Operating Large-Scale Kubernetes Environments - 1
July 13, 2022

Sayandeb Saha
NetApp

As containers become the default choice for developing and distributing modern applications and Kubernetes (k8s) the de-facto platform for deploying, running, and scaling such applications, enterprises need to scale their Kubernetes environments rapidly to keep up. However, rapidly scaling Kubernetes environments can be challenging and create complexities that may be hard for you to address and difficult to resolve without a clear strategy. This blog specifies a few common techniques that you can use to navigate the complexities of managing scaled-out Kubernetes environments.

Operating Clusters as Fleets

Most scaled-out Kubernetes environments contain hundreds, if not thousands, of clusters because Kubernetes at its core is also a cluster commoditization technology, making it extremely easy to create, run, and scale clusters.

Consequently, many large Kubernetes environments experience cluster sprawls. Operating these clusters as a fleet of compute clusters on which you apply consistent configuration, security, governance, and other policies so that they are easy to manage, monitor, upgrade, and migrate is a best practice.

Also, reduce the blast radius of your fleets (of K8s clusters) by isolating them in different geographies/public cloud regions so that a failure of one fleet because of a service impacting problem does not impact others, resulting in cascading failures, which could be catastrophic. Commercial software tools are available that can help with such tasks.

Auto Scaling Infrastructure

Large Kubernetes environments need highly elastic infrastructure to provide compute, storage, and networking resources, which is consumed on-demand to keep the environment humming. Kubernetes clusters scale up and down automatically to support application needs. Resource-constrained clusters can impact the availability of a service provided by the application implementing the service. Over-provisioning is always an option, but it's expensive to do so.

In public clouds, auto-scaling infrastructure is easier to realize if you watch the costs and instrument cost optimization tools to manage your costs. On-premises, it's much harder to build a true auto-scaling infrastructure. It means the ability to provision and (potentially de-provision) thousands of virtual or bare metal worker nodes, terabytes of storage, and networking resources in minutes to keep up with the dynamic nature of Kubernetes workloads. To mitigate the auto-scaling requirement for large Kubernetes deployments, you may want to adopt a "Namespace-as-a-Service" operating model described in the next section, which has many advantages.

Namespace-as-a-Service Operating Model

As enterprises grapple with the many challenges of managing and maintaining large-scale Kubernetes estates, they adopted an operating model called ‘Namespace-as-a-Service" for managing such environments. In the "Namespace-as-a-Service" operating model, you use a small number of very large Kubernetes clusters. You then onboard application teams on the clusters, allocate one or more namespaces (virtual clusters) for application teams based on their needs, add worker nodes as needed, and add storage and other cluster resources. You can then use role-based access control (RBAC), network policies, and ResourceQuotas at the namespace level to limit and share the consumption of aggregate resources available in the cluster in a multi-tenant environment securely.

As new application teams or applications from existing teams need cluster real estate, this process is repeated to achieve controlled scaling of your Kubernetes estate that is easier to manage and maintain. This operating model mitigates cluster sprawl and enables policy-based control over resource consumption.

Well-Architected Horizontally-Scaled Apps

Architecting the apps that run on Kubernetes properly also goes a long way towards scaling your Kubernetes environment. With Kubernetes, it is essential to design applications that scale horizontally so that it is easier to scale your Kubernetes environment as your applications scale. This design pattern is distinct from vertical scaling, where resources (CPU, memory, disk I/O) are allocated to a single application stack, which can hit limits making the environment unstable.

Ideally, Kubernetes applications should be implemented by using a set of microservices, which communicate with each other using an API. This is distinct from traditional monolithic applications, where subsystems of an application communicate with each other using internal mechanisms. Your developers can leverage Kubernetes to optimize the placement of the microservices on node(s) that are right sized to handle the resource requirements of the microservices. Designing your applications in this manner allows for offloading the complexity of managing these apps to the operational realm where Kubernetes can manage them for you.

Go to: Navigating the Complexities of Operating Large-Scale Kubernetes Environments - 2

Sayandeb Saha is Sr. Director, Product Management, at NetApp
Share this

Industry News

April 25, 2024

JFrog announced a new machine learning (ML) lifecycle integration between JFrog Artifactory and MLflow, an open source software platform originally developed by Databricks.

April 25, 2024

Copado announced the general availability of Test Copilot, the AI-powered test creation assistant.

April 25, 2024

SmartBear has added no-code test automation powered by GenAI to its Zephyr Scale, the solution that delivers scalable, performant test management inside Jira.

April 24, 2024

Opsera announced that two new patents have been issued for its Unified DevOps Platform, now totaling nine patents issued for the cloud-native DevOps Platform.

April 23, 2024

mabl announced the addition of mobile application testing to its platform.

April 23, 2024

Spectro Cloud announced the achievement of a new Amazon Web Services (AWS) Competency designation.

April 22, 2024

GitLab announced the general availability of GitLab Duo Chat.

April 18, 2024

SmartBear announced a new version of its API design and documentation tool, SwaggerHub, integrating Stoplight’s API open source tools.

April 18, 2024

Red Hat announced updates to Red Hat Trusted Software Supply Chain.

April 18, 2024

Tricentis announced the latest update to the company’s AI offerings with the launch of Tricentis Copilot, a suite of solutions leveraging generative AI to enhance productivity throughout the entire testing lifecycle.

April 17, 2024

CIQ launched fully supported, upstream stable kernels for Rocky Linux via the CIQ Enterprise Linux Platform, providing enhanced performance, hardware compatibility and security.

April 17, 2024

Redgate launched an enterprise version of its database monitoring tool, providing a range of new features to address the challenges of scale and complexity faced by larger organizations.

April 17, 2024

Snyk announced the expansion of its current partnership with Google Cloud to advance secure code generated by Google Cloud’s generative-AI-powered collaborator service, Gemini Code Assist.

April 16, 2024

Kong announced the commercial availability of Kong Konnect Dedicated Cloud Gateways on Amazon Web Services (AWS).

April 16, 2024

Pegasystems announced the general availability of Pega Infinity ’24.1™.