Navigating the Complexities of Operating Large-Scale Kubernetes Environments - 1
July 13, 2022

Sayandeb Saha

As containers become the default choice for developing and distributing modern applications and Kubernetes (k8s) the de-facto platform for deploying, running, and scaling such applications, enterprises need to scale their Kubernetes environments rapidly to keep up. However, rapidly scaling Kubernetes environments can be challenging and create complexities that may be hard for you to address and difficult to resolve without a clear strategy. This blog specifies a few common techniques that you can use to navigate the complexities of managing scaled-out Kubernetes environments.

Operating Clusters as Fleets

Most scaled-out Kubernetes environments contain hundreds, if not thousands, of clusters because Kubernetes at its core is also a cluster commoditization technology, making it extremely easy to create, run, and scale clusters.

Consequently, many large Kubernetes environments experience cluster sprawls. Operating these clusters as a fleet of compute clusters on which you apply consistent configuration, security, governance, and other policies so that they are easy to manage, monitor, upgrade, and migrate is a best practice.

Also, reduce the blast radius of your fleets (of K8s clusters) by isolating them in different geographies/public cloud regions so that a failure of one fleet because of a service impacting problem does not impact others, resulting in cascading failures, which could be catastrophic. Commercial software tools are available that can help with such tasks.

Auto Scaling Infrastructure

Large Kubernetes environments need highly elastic infrastructure to provide compute, storage, and networking resources, which is consumed on-demand to keep the environment humming. Kubernetes clusters scale up and down automatically to support application needs. Resource-constrained clusters can impact the availability of a service provided by the application implementing the service. Over-provisioning is always an option, but it's expensive to do so.

In public clouds, auto-scaling infrastructure is easier to realize if you watch the costs and instrument cost optimization tools to manage your costs. On-premises, it's much harder to build a true auto-scaling infrastructure. It means the ability to provision and (potentially de-provision) thousands of virtual or bare metal worker nodes, terabytes of storage, and networking resources in minutes to keep up with the dynamic nature of Kubernetes workloads. To mitigate the auto-scaling requirement for large Kubernetes deployments, you may want to adopt a "Namespace-as-a-Service" operating model described in the next section, which has many advantages.

Namespace-as-a-Service Operating Model

As enterprises grapple with the many challenges of managing and maintaining large-scale Kubernetes estates, they adopted an operating model called ‘Namespace-as-a-Service" for managing such environments. In the "Namespace-as-a-Service" operating model, you use a small number of very large Kubernetes clusters. You then onboard application teams on the clusters, allocate one or more namespaces (virtual clusters) for application teams based on their needs, add worker nodes as needed, and add storage and other cluster resources. You can then use role-based access control (RBAC), network policies, and ResourceQuotas at the namespace level to limit and share the consumption of aggregate resources available in the cluster in a multi-tenant environment securely.

As new application teams or applications from existing teams need cluster real estate, this process is repeated to achieve controlled scaling of your Kubernetes estate that is easier to manage and maintain. This operating model mitigates cluster sprawl and enables policy-based control over resource consumption.

Well-Architected Horizontally-Scaled Apps

Architecting the apps that run on Kubernetes properly also goes a long way towards scaling your Kubernetes environment. With Kubernetes, it is essential to design applications that scale horizontally so that it is easier to scale your Kubernetes environment as your applications scale. This design pattern is distinct from vertical scaling, where resources (CPU, memory, disk I/O) are allocated to a single application stack, which can hit limits making the environment unstable.

Ideally, Kubernetes applications should be implemented by using a set of microservices, which communicate with each other using an API. This is distinct from traditional monolithic applications, where subsystems of an application communicate with each other using internal mechanisms. Your developers can leverage Kubernetes to optimize the placement of the microservices on node(s) that are right sized to handle the resource requirements of the microservices. Designing your applications in this manner allows for offloading the complexity of managing these apps to the operational realm where Kubernetes can manage them for you.

Go to: Navigating the Complexities of Operating Large-Scale Kubernetes Environments - 2

Sayandeb Saha is Sr. Director, Product Management, at NetApp
Share this

Industry News

September 21, 2023

Red Hat and Oracle announced the expansion of their alliance to offer customers a greater choice in deploying applications on Oracle Cloud Infrastructure (OCI). As part of the expanded collaboration, Red Hat OpenShift, the industry’s leading hybrid cloud application platform powered by Kubernetes for architecting, building, and deploying cloud-native applications, will be supported and certified to run on OCI.

September 21, 2023

Harness announced the availability of Gitness™, a freely available, fully open source Git platform that brings a new era of collaboration, speed, security, and intelligence to software development.

September 20, 2023

Oracle announced new application development capabilities to enable developers to rapidly build and deploy applications on Oracle Cloud Infrastructure (OCI).

September 20, 2023

Sonar announced zero-configuration, automatic analysis for programming languages C and C++ within SonarCloud.

September 20, 2023

DataStax announced a new JSON API for Astra DB – the database-as-a-service built on the open source Apache Cassandra® – delivering on one of the most highly requested user features, and providing a seamless experience for Javascript developers building AI applications.

September 19, 2023

Oracle announced the availability of Java 21.

September 19, 2023

Mirantis launched Lens AppIQ, available directly in Lens Desktop and as (Software as a Service) SaaS.

September 19, 2023

Buildkite announced the company has entered into a definitive agreement to acquire Packagecloud, a cloud-based software package management platform, in an all stock deal.

September 19, 2023

CrowdStrike has agreed to acquire Bionic, a provider of Application Security Posture Management (ASPM).

September 18, 2023

Perforce Software announces BlazeMeter's Test Data Pro, the latest addition to its continuous testing platform.

September 18, 2023

CloudBees announced a new cloud native DevSecOps platform that places platform engineers and developer experience front and center.

September 18, 2023

Akuity announced a new open source tool, Kargo, to implement change promotions across many application life cycle stages using GitOps principles.

September 14, 2023

CloudBees announced significant performance and scalability breakthroughs for Jenkins® with new updates to its CloudBees Continuous Integration (CI) software.