Developers: Pick Your LLM Carefully
March 25, 2024

Peter Schneider
Qt Group

Software developers probably don't need to worry as much as they think about GenAI taking their jobs. But they do need to think twice about which language model they use. In fact, the Large Language Model (LLM) space is seeing something of a code generation arms race.

How do you know which one's right for you?

The size of your LLM matters

The hope behind LLMs is that they might help transform coders into architects. I say "hope" because mainstream models like GPT-4 can barely solve 5% of real-world development issues(link is external).

My own personal experience with chatbots for AI-assisted coding has been a frustrating endeavour. From imagining fake variables to concepts that were deprecated a decade ago, there's a lot of nonsense that might go unnoticed by the untrained eye. Even a meticulous amount of "prompt engineering" can sometimes only do so much. There's a sweet spot to how much context actually helps before it just creates more confused and random results at the cost of more processing power.

The pool that mainstream LLMs draw data from has typically been too large, which should be a huge concern for developers and organisations, and not just out of concern for quality. It's about trust. If the LLM you're using functions like a digital vacuum cleaner, without telling you where it's sourcing data from, that's a problem. You don't want to ship a product, only to then find out that a chunk of the code you generated is actually from another organization's copyrighted code. Even a small bit of code of code that's been accidentally generated by a LLM as a copy of the training data could land a company in extremely hot legal waters.

Want to use an LLM for coding? Use one that was built for coding

We're finally seeing LLMs from both Big Tech and small tech players that clearly demonstrate an effort to acknowledge the challenge developers face with AI-generated coding. Some are even trained on billions of tokens that pertain to specific languages like Python.

It's an exciting hint at where LLMs could yet go in terms of hyper-specialised relevancy to coders. Looking more broadly at LLMs beyond code generation, we're seeing models as small as two billion parameters — so small you can run them locally on a laptop. Such granular fine tuning is great, but based on how some developers are responding to some market offerings(link is external), we need even more fine tuning. Ask developers about their pet peeves for LLMs and you'll still hear a familiar pattern: complicated prompt formats, strict guardrails, and hallucinations — a reminder that any model is only as good as the data it's trained on.

Still, this tailored approach has drawn important attention to the fact that large language models are not the only way to succeed in AI-assisted code generation. There's more momentum than ever for smaller LLMs that focus exclusively on coding. Some are better at certain tasks than others, but if you want safety, go small. If you're just programming in C++, do you need extraneous "guff" knowledge on German folklore like, "who was the Pied Piper of Hamelin?" When you have a small data pool, it's easier for data to stay relevant, cheaper to train the model, and you're also far less likely to accidentally use another company's copyrighted data.

Research all your LLM options thoroughly, because there will no doubt be even more choice next year, and even more than that in five years. Don't pick what's popular because it's popular.

Development Means More Than Just Coding

Unless models reach an accuracy of coding answers within a 98-100% margin of error, I don't suspect GenAI will wholly replace humans for coding. But if it did, some are questioning whether software engineers will transition into becoming "code reviewers" who simply verify AI-generated code instead of writing it.

Would they, though? They might if an organization has poor internal risk control processes. Good risk control involves using the four-eyes principle(link is external), which says that any activity of material risk (like shipping software) should be reviewed and double-checked by a second, independent, and competent individual. For the time being at least, I think we're a long way off from AI being reclassified as an independent and competent lifeform.

There's also the fact that end-to-end development, and things like building Human-Machine Interfaces, involve so much more than just coding. LLMs can respectably interact with text and elements in an image, with more tools popping up that can convert web designs into frontend code. But AI single-handedly assuming competent control of design that relates to graphical and UI/UX workflows? That's much harder than coding, though perhaps not impossible. And coding is one part of development. The rest is investing in something novel, figuring out who the audience is, translating ideas into something buildable, and polishing. That's where the human element comes in.

Regardless of how good LLMs ever get, every programmer should always treat every code like it's their own. Always do the peer review and ask your colleague, "is my good code?" Blind trust gets you nowhere.

Peter Schneider is Senior Product Manager at Qt Group
Share this

Industry News

May 15, 2025

GitLab announced the launch of GitLab 18, including AI capabilities natively integrated into the platform and major new innovations across core DevOps, and security and compliance workflows that are available now, with further enhancements planned throughout the year.

May 15, 2025

Perforce Software is partnering with Siemens Digital Industries Software to transform how smart, connected products are designed and developed.

May 15, 2025

Reply launched Silicon Shoring, a new software delivery model powered by Artificial Intelligence.

May 15, 2025

CIQ announced the tech preview launch of Rocky Linux from CIQ for AI (RLC-AI), an operating system engineered and optimized for artificial intelligence workloads.

May 14, 2025

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, announced the launch of the Cybersecurity Skills Framework, a global reference guide that helps organizations identify and address critical cybersecurity competencies across a broad range of IT job families; extending beyond cybersecurity specialists.

May 14, 2025

CodeRabbit is now available on the Visual Studio Code editor.

The integration brings CodeRabbit’s AI code reviews directly into Cursor, Windsurf, and VS Code at the earliest stages of software development—inside the code editor itself—at no cost to the developers.

May 14, 2025

Chainguard announced Chainguard Libraries for Python, an index of malware-resistant Python dependencies built securely from source on SLSA L2 infrastructure.

May 14, 2025

Sysdig announced the donation of Stratoshark, the company’s open source cloud forensics tool, to the Wireshark Foundation.

May 13, 2025

Pegasystems unveiled Pega Predictable AI™ Agents that give enterprises extraordinary control and visibility as they design and deploy AI-optimized processes.

May 13, 2025

Kong announced the introduction of the Kong Event Gateway as a part of their unified API platform.

May 13, 2025

Azul and Moderne announced a technical partnership to help Java development teams identify, remove and refactor unused and dead code to improve productivity and dramatically accelerate modernization initiatives.

May 13, 2025

Parasoft has added Agentic AI capabilities to SOAtest, featuring API test planning and creation.

May 13, 2025

Zerve unveiled a multi-agent system engineered specifically for enterprise-grade data and AI development.

May 12, 2025

LambdaTest, a unified agentic AI and cloud engineering platform, has announced its partnership with MacStadium(link is external), the industry-leading private Mac cloud provider enabling enterprise macOS workloads, to accelerate its AI-native software testing by leveraging Apple Silicon.

May 12, 2025

Tricentis announced a new capability that injects Tricentis’ AI-driven testing intelligence into SAP’s integrated toolchain, part of RISE with SAP methodology.