Cloud Workload Security - Improving Practices for Deployment and Run-Time
May 10, 2022

Yasser Fuentes
Bitdefender

DevOps is considered green when it comes to security practices. Developers are generally focused on the performance and deployment of solutions, rather than their protection. As cloud workload security (CWS) advances from deployment, to mainstream adoption, to run-time optimization, there are certain steps that DevOps teams need to implement to ensure they're properly protecting their projects.

Below, find three critical steps for DevOps teams to improve their CWS protections for application deployment and run-time.

Ensure a proper assessment

The first step to implementing proper security measures to DevOps pipelines is to make sure a proper assessment is performed. It's critical for an organization to understand the risks associated with migration and cloud solution provider infrastructure. This assessment requires DevOps teams to ask multiple questions.

First, what is the shared responsibility of this project?

Consider all parties who will be utilizing this solution and who has a hand in keeping it running once live.

Second, which controls can be used with the current infrastructure, and which ones do you have to implement?

Once a CWS initiative is in active run-time, take note of the security capabilities you are able to immediately implement, and which safeguards are still missing.

Lastly, which security controls are in line with risk management?

Once your initial assessment is complete, make sure that you are allocating adequate security controls to align with risk management initiatives. By performing this assessment, security teams and DevOps developers alike are able to better protect against cyberattacks before and during deployment-especially important in the modern DevOps environment.

Recognize the cybercriminal draw to cloud infrastructure environments

In the current DevOps landscape, there are a number of reasons cybercriminals are shifting attacks to virtualized, and more specifically Linux environments. First, because more than 80 percent of workloads that reside in the cloud/hybrid cloud (both servers and containers) environments run on Linux-based distributions.

Why is this the case?

They're more efficient, easier to manage, they consume less resources, and at their core, they're purpose-built to serve a specific goal. This means that they're more generically built and formulaic, making it easier for cybercriminals to mimic an environment.

Second, Linux-based workloads are the most overlooked across the board in any infrastructure- many believe that because it is open sourced, they're not responsible for securing Linux.

Lastly, most distributions are housed in the open-source realm meaning there's no real commitment to provide security updates and patches, deeming them vulnerable by nature. When deploying a solution on a Linux/open-source environment, DevOps teams should be hyper-aware of the security risks and what this type of environment will mean for security purposes in the long run.

Steps for protecting and deploying container-based applications

With this information in mind, there are key steps for building and deploying more secure virtualized environments. When developing a DevOps initiative, make sure that security is leveraged as part of every stage of the deployment pipeline.

It's important to consider capabilities, such as managed detection and response (MDR) and extended detection and response (XDR), as part of the assessment process during pre-deployment to proactively assess threats, misconfigurations, and vulnerabilities.

Next, when your containers are ready for run-time, make sure you have safeguards for run-time protection. You can build container environments with protections, but without actual run-time protection, those containers remain vulnerable during a successful breach.

Understand that you're responsible for the data that your applications process within the cloud, whether it's owned or not. Once other users adopt your technology, securing the hosted data becomes a shared responsibility.

Each one of these steps will ensure more trustworthy, user-friendly environments.

Conclusion

Remember that security controls by themselves are just a piece of technology. Security controls, in an ideal setting, should be in line with processes and product development. Gearing up for deployment should not mean sacrificing security controls to deploy faster or more efficiently.

Additionally, the DevOps engineers behind these controls must be able to understand the technology, the protocols, and the risks- plus how to effectively take advantage of these technologies to use them to their full potential. By understanding how to protect DevOps initiatives to their fullest, dev teams will ultimately build better, security hardened, container environments.

Yasser Fuentes is Technical Product Manager (Cloud) at Bitdefender
Share this

Industry News

April 25, 2024

JFrog announced a new machine learning (ML) lifecycle integration between JFrog Artifactory and MLflow, an open source software platform originally developed by Databricks.

April 25, 2024

Copado announced the general availability of Test Copilot, the AI-powered test creation assistant.

April 25, 2024

SmartBear has added no-code test automation powered by GenAI to its Zephyr Scale, the solution that delivers scalable, performant test management inside Jira.

April 24, 2024

Opsera announced that two new patents have been issued for its Unified DevOps Platform, now totaling nine patents issued for the cloud-native DevOps Platform.

April 23, 2024

mabl announced the addition of mobile application testing to its platform.

April 23, 2024

Spectro Cloud announced the achievement of a new Amazon Web Services (AWS) Competency designation.

April 22, 2024

GitLab announced the general availability of GitLab Duo Chat.

April 18, 2024

SmartBear announced a new version of its API design and documentation tool, SwaggerHub, integrating Stoplight’s API open source tools.

April 18, 2024

Red Hat announced updates to Red Hat Trusted Software Supply Chain.

April 18, 2024

Tricentis announced the latest update to the company’s AI offerings with the launch of Tricentis Copilot, a suite of solutions leveraging generative AI to enhance productivity throughout the entire testing lifecycle.

April 17, 2024

CIQ launched fully supported, upstream stable kernels for Rocky Linux via the CIQ Enterprise Linux Platform, providing enhanced performance, hardware compatibility and security.

April 17, 2024

Redgate launched an enterprise version of its database monitoring tool, providing a range of new features to address the challenges of scale and complexity faced by larger organizations.

April 17, 2024

Snyk announced the expansion of its current partnership with Google Cloud to advance secure code generated by Google Cloud’s generative-AI-powered collaborator service, Gemini Code Assist.

April 16, 2024

Kong announced the commercial availability of Kong Konnect Dedicated Cloud Gateways on Amazon Web Services (AWS).

April 16, 2024

Pegasystems announced the general availability of Pega Infinity ’24.1™.