Best Practices and Key Metrics for Performance Testing
September 03, 2020

Akshaya Choudhary
Cigniti Technologies

Before releasing a software application to the end customers, it must be measured against parameters like robustness, scalability, speed, responsiveness, interoperability, throughput, and stability under different load conditions. This is important as an application with poor usability and functionality will not be accepted by its target customers.

To ensure the fulfillment of these requirements, the application should undergo performance testing under reasonable load conditions. Application performance testing(link is external) makes sure the software application does not buckle under reasonable load thresholds but meets the pre-defined metrics of performance.


The tech-savvy customers of today expect their software applications to perform every function quickly, accurately, and without any hiccups. Loading speed is an important performance metric to evaluate an application. According to statistics, around 40% of people are expected to abandon a website if it takes more than 3 seconds to load.

Also, a one-second delay in loading a page may end up with 7 percent fewer conversions — a significant number indeed! A performance testing methodology(link is external) can identify and fix glitches/bottlenecks in the application by generating diagnostic information.

What Are the Types of Performance Testing?

The various types of testing to validate the performance of an application against pre-defined load conditions are as follows:

Load testing: A load performance testing exercise evaluates the response time of the application under a normal workload condition.

Stress testing: Similar to load testing, it evaluates the performance of an application beyond the normal load thresholds. It determines the level of load the application can handle before faltering.

Endurance testing: This type of application load testing measures the performance of an application over a period of time and helps to identify issues like memory leaks. This type of testing is also referred to as soak testing.

Spike testing: It is a type of stress testing wherein the performance of an application is evaluated when subjected to sudden variations in the workload conditions.

Scalability testing: Unlike spike testing, scalability testing involves determining the performance of an application when subjected to a gradual increase in workload.

Volume testing: This type of software application load testing evaluates the performance of an application when faced with a large data volume.

Key Metrics of Performance Testing

Evaluating the performance of a website, web or mobile application against pre-defined load conditions needs the presence of some key metrics shown as under:

Response time: The actual time taken by the application to respond to a specific query.

Average load time: The average time taken by a website or mobile application to load irrespective of the device platforms.

Throughput: Refers to the number of transactions an application can handle in a second.

Peak response time: The duration of the longest response given by the application. If the same is greater than the average load time, then there is a problem to be addressed.

Average latency: Also referred to as wait time, it is the time spent by a request in a queue before getting processed.

Requests per second: Refers to the number of requests handled by the application per second.

Best Practices to Conduct Performance Testing

After choosing the requisite tools, the QA testers can create and execute a performance testing framework(link is external) as mentioned below:

Test environment: The first step is to create a suitable test environment comprising the hardware, software, and network to execute the test. It is only the right set up reflecting the real-world scenarios that can identify (and mitigate) performance-related issues.

Key performance metrics: Identify the key performance metrics against which measurements have to be taken for performance evaluation. These may include the response time, throughput, load time, concurrent users, error rate, and memory utilization, among others.

Users' perspective: It is important to understand the performance of an application from the users' perspective. So, instead of focusing on factors like server response, find out whether the users shall have a similar experience. This would mean creating a beta version of the product and capturing the users' experience.

Test plan: It includes the schedule, approach, scope, and resources needed to conduct the test. Additionally, it entails the features to be tested, the essential test elements and tasks to be tested, and testers assigned for the role.

Report generation and analysis: The result data are captured and analyzed to identify and fix any possible performance issues.

Retest: For any correctives applied to the application, the same should be retested against similar parameters.

Conclusion

Conducting performance testing can be time-consuming but extremely critical for the success of any application. It lets testers know about the various thresholds the application can handle in terms of traffic, load time, and throughput, among others.

Akshaya Choudhary is Content Marketer at Cigniti Technologies, an Independent Software Testing company
Share this

Industry News

June 02, 2025

Pegasystems introduced Pega Agentic Process Fabric™, a service that orchestrates all AI agents and systems across an open agentic network for more reliable and accurate automation.

June 02, 2025

Fivetran announced that its Connector SDK now supports custom connectors for any data source.

June 02, 2025

Copado announced that Copado Robotic Testing is available in AWS Marketplace, a digital catalog with thousands of software listings from independent software vendors that make it easy to find, test, buy, and deploy software that runs on Amazon Web Services (AWS).

May 29, 2025

Sauce Labs announced the general availability of iOS 18 testing on its Virtual Device Cloud (VDC).

May 29, 2025

Infragistics announced the launch of Infragistics Ultimate 25.1, the company's flagship UX and UI product.

May 29, 2025

CIQ announced the creation of its Open Source Program Office (OSPO).

May 28, 2025

Check Point® Software Technologies Ltd.(link is external) announced the launch of its next generation Quantum(link is external) Smart-1 Management Appliances, delivering 2X increase in managed gateways and up to 70% higher log rate, with AI-powered security tools designed to meet the demands of hybrid enterprises.

May 28, 2025

Salesforce and Informatica have entered into an agreement for Salesforce to acquire Informatica.

May 28, 2025

Red Hat and Google Cloud announced an expanded collaboration to advance AI for enterprise applications by uniting Red Hat’s open source technologies with Google Cloud’s purpose-built infrastructure and Google’s family of open models, Gemma.

May 28, 2025

Mirantis announced Mirantis k0rdent Enterprise and Mirantis k0rdent Virtualization, unifying infrastructure for AI, containerized, and VM-based workloads through a Kubernetes-native model, streamlining operations for high-performance AI pipelines, modern microservices, and legacy applications alike.

May 28, 2025

Snyk launched the Snyk AI Trust Platform, an AI-native agentic platform specifically built to secure and govern software development in the AI Era.

May 28, 2025

Bit Cloud announced the general availability of Hope AI, its new AI-powered development agent that enables professional developers and organizations to build, share, deploy, and maintain complex applications using natural language prompts, specifications and design files.

May 27, 2025

AI-fueled attacks and hyperconnected IT environments have made threat exposure one of the most urgent cybersecurity challenges facing enterprises today. In response, Check Point® Software Technologies Ltd.(link is external) announced a definitive agreement to acquire Veriti Cybersecurity, the first fully automated, multi-vendor pre-emptive threat exposure and mitigation platform.

May 27, 2025

LambdaTest announced the launch of its Automation MCP Server, a solution designed to simplify and accelerate the process of triaging test failures.