The Future Is Smart: Cloud Native + AI
April 21, 2022

Tobi Knaup
D2iQ

Leading organizations around the world are adopting cloud native technologies to build next- generation products and achieve the agility that they need to stay ahead of their competition. Although cloud native and Kubernetes are very disruptive technologies, there is another technology that is probably the most disruptive technology of our generation — artificial intelligence (AI) and its subset, machine learning (ML).

We already see AI in digital assistants like Siri and Alexa, chatbots on websites and recommendation engines on retail sites. In the near future, AI will be embedded in almost all the products that surround us, from self-driving cars to next-generation medical devices.

Organizations that are building cloud-native applications today will need to evolve their capabilities to manage AI workloads because the next generation of cloud-native applications will have AI at their core. We call those "smart cloud-native" applications because they have AI built in.

Kubernetes a Perfect Match for AI

Kubernetes has become the enterprise cloud-native platform of choice and is a natural fit for running AI and ML workloads for a number of reasons:

■ Kubernetes can easily scale to meet the resource needs of AI/ML training and production workloads.

■ Kubernetes enables sharing of expensive and limited resources like graphics processing units between developers to speed up development and lower costs.

■ Kubernetes provides a layer of abstraction that enables data scientists to access the services they require without worrying about the details of the underlying infrastructure.

■ Kubernetes gives organizations the agility to deploy and manage AI/ML operations across public clouds, private clouds, on-premise, and secure air-gap locations, and to easily change and migrate deployments without incurring excess cost. A smart cloud-native business application consists of a number of components, including microservices, data services, and AI/ML pipelines. Kubernetes provides a single consistent platform on which to run all workloads, rather than in silos, which simplifies deployment and management and minimizes cost.

■ As an open-source cloud-native platform, Kubernetes enables organizations to apply cloud-native best practices and take advantage of continuous open-source innovation. Many of the modern AI/ML technologies are open source as well and come with native Kubernetes integration.

Smart Cloud-Native Challenges

Organizations that want to build smart cloud-native apps must also learn how to deploy those workloads in the cloud, in data centers, and at the edge. AI as a field is relatively young, so the best practices for putting AI applications into production are few and far between. The good news is that many of the best practices that exist around putting cloud native applications into production transfer easily to AI applications.

However, AI-driven smart cloud-native applications pose additional challenges for operators once in production because AI and ML pipelines are complex workloads made up of many components that run elastically and need to be updated frequently. This means that organizations need to start building operational capabilities around those AI workloads.

Cloud-native technologies have been around for about a decade, and enterprises are increasingly moving their most mission-critical workloads to cloud-native platforms like Kubernetes. This creates a slew of new challenges for organizations:

■ First, because those workloads are so mission-critical, it puts a much higher burden on operations teams to keep those workloads running 24/7 while making sure they are resilient, can scale, and are secure.

■ Second, those workloads tend to include more sophisticated technologies like data workloads, AI workloads, and machine learning workloads, which have their own operational challenges.

■ Third, modern cloud-native applications tend to run on a broad range of infrastructures, from a cloud provider or multiple cloud providers to data centers and edge deployments.

A Firm and Future-Proof Foundation

Organizations that want to adopt cloud-native technology must figure out how to address these challenges. To do this they need to change their workflows and culture to take full advantage of cloud native’s potential. They must learn how to build applications in a cloud-native way and to adopt the technologies that enable them to put those applications into production in a resilient and repeatable way.

The speed of innovation in the cloud-native ecosystem is unparalleled. Organizations that can keep pace with that innovation and learn how to adopt cloud-native and AI technologies will be able to build highly differentiated products that can put them ahead of their competition. They will be able to build their next-generation products much faster and in a more agile way, and they will be able to leverage AI to build smarter products.

Tobi Knaup is Co-Founder and CEO of D2iQ
Share this

Industry News

September 27, 2022

DevOps Institute will host SKILup Festival in Singapore on November 15, 2022.

September 27, 2022

Delinea announced the latest release of DevOps Secrets Vault, its high-speed vault for DevOps and DevSecOps teams.

September 27, 2022

The Apptainer community announced version 1.1.0 of the popular container system for secure, high-performance computing (HPC). Improvements in the new version provide a smaller attack surface for production deployments while offering features that improve and simplify the user experience.

September 26, 2022

Secure Code Warrior unveiled Coding Labs, a new mechanism that allows developers to more easily move from learning to applying secure coding knowledge, leading to fewer vulnerabilities in code.

September 26, 2022

ActiveState announced the availability of the ActiveState Artifact Repository.

September 26, 2022

Split Software announced the availability of its Feature Data Platform in the Microsoft Azure Marketplace.

September 22, 2022

Katalon announced the launch of the Katalon Platform, a modern and comprehensive software quality management platform that enables teams of any size to easily and efficiently test, launch, and optimize apps, products, and software.

September 22, 2022

StackHawk announced its Deeper API Security Test Coverage release.

September 21, 2022

Platform9 announced the launch of its latest open source project, Arlon.

September 21, 2022

Redpanda Data announced Redpanda Console.

September 21, 2022

mabl announced its availability as a private listing on Google Cloud Marketplace.

September 21, 2022

Zesty announced a $75 million Series B funding round led by B Capital and Series A investor Sapphire Ventures.

September 20, 2022

Opsera, the Continuous Orchestration platform for DevOps, announced a free trial of its no-code Salesforce Release Management platform for fast and secure Salesforce releases.

September 20, 2022

Sysdig announced ToDo and Remediation Guru.

September 20, 2022

AutoRABIT announced CodeScan Shield.