The Future Is Smart: Cloud Native + AI
April 21, 2022

Tobi Knaup
D2iQ

Leading organizations around the world are adopting cloud native technologies to build next- generation products and achieve the agility that they need to stay ahead of their competition. Although cloud native and Kubernetes are very disruptive technologies, there is another technology that is probably the most disruptive technology of our generation — artificial intelligence (AI) and its subset, machine learning (ML).

We already see AI in digital assistants like Siri and Alexa, chatbots on websites and recommendation engines on retail sites. In the near future, AI will be embedded in almost all the products that surround us, from self-driving cars to next-generation medical devices.

Organizations that are building cloud-native applications today will need to evolve their capabilities to manage AI workloads because the next generation of cloud-native applications will have AI at their core. We call those "smart cloud-native" applications because they have AI built in.

Kubernetes a Perfect Match for AI

Kubernetes has become the enterprise cloud-native platform of choice and is a natural fit for running AI and ML workloads for a number of reasons:

■ Kubernetes can easily scale to meet the resource needs of AI/ML training and production workloads.

■ Kubernetes enables sharing of expensive and limited resources like graphics processing units between developers to speed up development and lower costs.

■ Kubernetes provides a layer of abstraction that enables data scientists to access the services they require without worrying about the details of the underlying infrastructure.

■ Kubernetes gives organizations the agility to deploy and manage AI/ML operations across public clouds, private clouds, on-premise, and secure air-gap locations, and to easily change and migrate deployments without incurring excess cost. A smart cloud-native business application consists of a number of components, including microservices, data services, and AI/ML pipelines. Kubernetes provides a single consistent platform on which to run all workloads, rather than in silos, which simplifies deployment and management and minimizes cost.

■ As an open-source cloud-native platform, Kubernetes enables organizations to apply cloud-native best practices and take advantage of continuous open-source innovation. Many of the modern AI/ML technologies are open source as well and come with native Kubernetes integration.

Smart Cloud-Native Challenges

Organizations that want to build smart cloud-native apps must also learn how to deploy those workloads in the cloud, in data centers, and at the edge. AI as a field is relatively young, so the best practices for putting AI applications into production are few and far between. The good news is that many of the best practices that exist around putting cloud native applications into production transfer easily to AI applications.

However, AI-driven smart cloud-native applications pose additional challenges for operators once in production because AI and ML pipelines are complex workloads made up of many components that run elastically and need to be updated frequently. This means that organizations need to start building operational capabilities around those AI workloads.

Cloud-native technologies have been around for about a decade, and enterprises are increasingly moving their most mission-critical workloads to cloud-native platforms like Kubernetes. This creates a slew of new challenges for organizations:

■ First, because those workloads are so mission-critical, it puts a much higher burden on operations teams to keep those workloads running 24/7 while making sure they are resilient, can scale, and are secure.

■ Second, those workloads tend to include more sophisticated technologies like data workloads, AI workloads, and machine learning workloads, which have their own operational challenges.

■ Third, modern cloud-native applications tend to run on a broad range of infrastructures, from a cloud provider or multiple cloud providers to data centers and edge deployments.

A Firm and Future-Proof Foundation

Organizations that want to adopt cloud-native technology must figure out how to address these challenges. To do this they need to change their workflows and culture to take full advantage of cloud native’s potential. They must learn how to build applications in a cloud-native way and to adopt the technologies that enable them to put those applications into production in a resilient and repeatable way.

The speed of innovation in the cloud-native ecosystem is unparalleled. Organizations that can keep pace with that innovation and learn how to adopt cloud-native and AI technologies will be able to build highly differentiated products that can put them ahead of their competition. They will be able to build their next-generation products much faster and in a more agile way, and they will be able to leverage AI to build smarter products.

Tobi Knaup is Co-Founder and CEO of D2iQ
Share this

Industry News

February 02, 2023

Red Hat announced a multi-stage alliance to offer customers a greater choice of operating systems to run on Oracle Cloud Infrastructure (OCI).

February 02, 2023

Snow Software announced a new global partner program designed to enable partners to support customers as they face complex market challenges around managing cost and mitigating risk, while delivering value more efficiently and effectively with Snow.

February 02, 2023

Contrast Security announced the launch of its new partner program, the Security Innovation Alliance (SIA), which is a global ecosystem of system integrators (SIs), cloud, channel and technology alliances.

February 01, 2023

Red Hat introduced new security and compliance capabilities for the Red Hat OpenShift enterprise Kubernetes platform.

February 01, 2023

Jetpack.io formally launched with Devbox Cloud, a managed service offering for Devbox.

February 01, 2023

Jellyfish launched Life Cycle Explorer, a new solution that identifies bottlenecks in the life cycle of engineering work to help teams adapt workflow processes and more effectively deliver value to customers.

January 31, 2023

Ably announced the Ably Terraform provider.

January 31, 2023

Checkmarx announced the immediate availability of Supply Chain Threat Intelligence, which delivers detailed threat intelligence on hundreds of thousands of malicious packages, contributor reputation, malicious behavior and more.

January 31, 2023

Qualys announced its new GovCloud platform along with the achievement of FedRAMP Ready status at the High impact level, from the Federal Risk and Authorization Management Program (FedRAMP).

January 30, 2023

F5 announced the general availability of F5 NGINXaaS for Azure, an integrated solution co-developed by F5 and Microsoft that empowers enterprises to deliver secure, high-performance applications in the cloud.

January 30, 2023

Tenable announced Tenable Ventures, a corporate investment program.

January 26, 2023

Ubuntu Pro, Canonical’s comprehensive subscription for secure open source and compliance, is now generally available.

January 26, 2023

Mirantis, freeing developers to create their most valuable code, today announced that it has acquired the Santa Clara, California-based Shipa to add automated application discovery, operations, security, and observability to the Lens Kubernetes Platform.

January 25, 2023

SmartBear has integrated the powerful contract testing capabilities of PactFlow with SwaggerHub.

January 25, 2023

Venafi introduced TLS Protect for Kubernetes.