How to Build a Feedback Loop That Narrows the Gap Between Development and Security
September 23, 2021

Lebin Cheng
Imperva

There's a tug-of-war happening between the development operations team (DevOps) that's responsible for building the company's innovations and the security operations team (SecOps) that's tasked with keeping everything protected.

The growing proliferation of application programming interfaces (APIs) is further exacerbating the tension between these functions. On one side, you have SecOps teams, who have a difficult time gaining visibility into API transactions as API schemas are often lightly documented and subject to frequent changes. While on the other side, there are DevOps teams, who need the freedom to rapidly adjust APIs to meet changing business needs without the burden of manually updating API specifications for security testing and policy definitions.

Although the SecOps team wants to keep a watchful eye on the behaviors of the dozens or hundreds of APIs operating within their network, today's conventional API security methods slow DevOps and make the organization less efficient.

As the connective tissue that binds modern, cloud-native applications together, APIs are essential; but, they're also introducing more cybersecurity risk to the organization. By 2022, it's predicted that APIs will become the most frequently attacked enterprise web application vector.

To fully realize a successful approach to development security operations (DevSecOps) for API security, creating an effective feedback loop between DevOps and SecOps teams is critical to getting a grasp on API security risks.

Establishing a Feedback Loop that Discovers, Monitors and Secures APIs

Historically, applications were deployed under the assumption they would be protected by the network perimeter. As modern software development moves into cloud-native environments, this traditional concept is less effective and leaves the process exposed to additional security vulnerabilities.

By establishing and implementing a feedback loop between DevOps and SecOps, organizations can streamline application release workflows and enable developers to focus on delivering an optimal digital experience while providing the SecOps team with visibility and control over the application runtime.

The ideal feedback loop should encompass three critical domains: discovery, monitoring and security.

Discovery: Maintain an always up-to-date API inventory with contextual data labels. Ideally, this should be done autonomously with an unobtrusive solution that continuously keeps the API inventory up-to-date with data security classifications. For some, discovery simply entails mapping API service endpoints, but that's not enough. Instead, you need to know what data each API is accessing — and shift to a data-centric approach to API security.

Monitoring: Generate developer-sourced specifications and check against security best practices. Functional or regression testing is monitored to validate specifications or to generate specifications if they're not available. Enabling automation ensures protection can keep pace with application changes without manual intervention. That way, new APIs discovered during runtime are checked in the next cycle while API calls in testing help prepare the runtime model.

Security: For API-first apps, API specification is always completed and updated before actual implementation. For other applications, API specification can be used as a reference, but dynamic discovery is needed to ensure the actual implementation and API specifications are in sync. This also means that stringent positive enforcement is not possible. An automated learning system is needed to build a new baseline every time a new API specification is discovered or updated. The new baseline helps to identify anomalies accurately and drive security policy actions without manual intervention.

This feedback loop gives the SecOps team the visibility they need into potential threats without slowing down the development process. It's analogous to adding a security camera to monitor the production floor of a warehouse. The SecOps team gets visibility around-the-clock, monitors for suspicious activity and can react as soon as something nefarious happens. In a software production environment, AI and machine learning are essential for helping automate this activity and to reduce the time it takes to respond.

What's Needed Longer Term

The idea behind a development security operations (DevSecOps) process is sound, but the approach is often flawed because these two functional departments cannot simply be locked in the same room and expected to exist symbiotically.

Both DevOps and SecOps want a frictionless relationship where developers are enabled to move fast and innovate the business, without putting it at risk. However, both sides lack the tools needed to monitor what's happening in development and production — particularly the API calls between internal and external applications and services.

Through the implementation of the API discovery and risk assessment feedback loop, organizations can successfully streamline the resources needed to manually fill the gap while mitigating security risks.

Lebin Cheng is Head of API Security, Office of the CTO, at Imperva
Share this

Industry News

January 26, 2023

Ubuntu Pro, Canonical’s comprehensive subscription for secure open source and compliance, is now generally available.

January 26, 2023

Mirantis, freeing developers to create their most valuable code, today announced that it has acquired the Santa Clara, California-based Shipa to add automated application discovery, operations, security, and observability to the Lens Kubernetes Platform.

January 25, 2023

SmartBear has integrated the powerful contract testing capabilities of PactFlow with SwaggerHub.

January 25, 2023

Venafi introduced TLS Protect for Kubernetes.

January 25, 2023

Tricentis announced the general availability of Tricentis Test Automation, a cloud-based test automation solution that simplifies test creation, orchestration, and scalable test execution for easier collaboration among QA teams and their business stakeholders and faster, higher-quality, and more durable releases of web-based applications and business processes.

January 24, 2023

Harness announced the acquisition of Propelo.

January 23, 2023

Couchbase announced its Couchbase Capella Database-as-a-Service (DBaaS) offering on Azure.

January 23, 2023

Mendix and Software Improvement Group (SIG) have announced the release of Mendix Quality & Security Management (QSM), a new cybersecurity solution that provides continuous deep-dive insights into security and code quality to immediately address risks and vulnerabilities.

January 23, 2023

Trunk announces the public launch of CI Analytics.

January 23, 2023

Panaya announced a new Partnership Program in response to ongoing growth within its partner network over the past year.

January 23, 2023

Cloudian closed $60 million in new funding, bringing the company’s total funding to $233 million.

January 19, 2023

Progress announced the R1 2023 release of Progress Telerik and Progress Kendo UI.

January 19, 2023

Wallarm announced the early release of the Wallarm API Leak Management solution, an enhanced API security technology designed to help organizations identify and remediate attacks exploiting leaked API keys and secrets, while providing on-going protection against hacks in the event of a leak.

January 19, 2023

ThreatModeler launched Threat Model Marketplace, a cybersecurity asset marketplace offering pre-built, field-tested threat models to be downloaded — free for a limited time — and incorporated into new and ongoing threat modeling initiatives.

January 18, 2023

Software AG has launched new updates to its webMethods platform that will simplify the process by which developers can find, work on and deploy new APIs and integration tools or capabilities.