Code Linting: A Shift Left Strategy to Protect Your Codebase
July 22, 2021

Nicolas Bontoux
SonarSource

Delivering clean and safe software is no longer an option for developers or the organizations they work for. Customers have little patience for buggy, error-prone apps and software that's rife with critical vulnerabilities. These sort of quality and security issues can seriously hurt a company's brand reputation and negatively impact revenues.

Security has become a particular concern for developers. The majority of software security vulnerabilities are the result of coding errors, not malicious attacks. According to a recent analysis(link is external) of over 500 Github security advisories from 2019-2020, 83% of advisories were caused by coding mistakes, while only 17% "were related to explicitly malicious behavior such as backdoor attempts."

Because of these factors, developers and development teams are continuously looking for ways to achieve cleaner and safer code. As a result, static analysis tools have begun to grow rapidly in popularity.

On a basic level, code linting software analyzes source code to flag issues during the development process and helps developers find and fix typos, programming errors, syntax, and bugs.

But is it enough?

No. That's why Developers are turning to modern day linters.

Modern day linters are becoming a must-have commodity in every developer's toolbox because of their advanced capabilities. Good linting tools not only perform basic checks, but are also capable of running static analysis to detect security vulnerabilities, memory leaks, code compliance, and more, right in the development environment. With developers taking more ownership of security, these features are critical.

Support for a Shift Left Approach

Bugs in production apps can wreak major havoc, exposing sensitive user data and jeopardizing a company's revenue and reputation. Detecting and fixing these bugs in pre-production is critical to avoiding these issues. It's also much easier and cheaper to correct coding errors during pre-production than it is once an app is in production. Aside from reducing the risk of end-user impact and protecting your brand's reputation, detecting issues earlier in the software pipeline can also reduce development costs and avoid delayed projects.

Developers can achieve this by adopting a shift left approach to software development — testing code, finding errors and fixing them as early as possible, often dynamically as you code (i.e. in your IDE using a "Clean as you Code" approach). These advanced linting tools ultimately support this shift left approach, allowing developers to detect issues earlier in the development cycle. Shifting left not only allows developers to deliver clean and safe code, but also improves the overall maintainability and reliability of their codebase. Moreover, these checks can be built into a team's development toolchain — so that bugs and security vulnerabilities can be prevented before an app is deployed to production.

Beyond Identifying Errors: Helping Developers Grow

Good linting tools need to do more than just identify syntax, style, bugs, or security issues — they must provide helpful cues on what the issues are, why they are harmful, and how they should be fixed. When a linter flags that a developer has made an error, it should offer context explaining the reasoning behind the rule that was broken, information on why it should be followed, provide helpful examples, and a rundown of what can go wrong if the rule isn't followed. Developers shouldn't change code simply because a linter told them to. They should change it because they've learned to do better.

With these insights, developers can learn from their mistakes, uncover new best practices to avoid those mistakes, master new programming languages faster, and code safer and better apps in the long run. This not only improves software quality, but boosts the efficiency of an organization's entire development team. As a result, organizations can reduce technical debt and spend more developer resources building new features rather than fixing flawed code.

For developers to learn from their mistakes, instant feedback is essential. Linting tools should flag any errors or quality issues while developers are writing code, providing more of an intuitive spell-checking or grammar checking experience. This real-time feedback makes it easier for developers to recognize mistakes and remember how to prevent them in the future.

This approach also supports better code ownership. When issues are raised as a developer adds new code, it's clear that person is responsible for fixing it. This avoids the confusion common in traditional testing methods, when errors aren't flagged until long after code is written and development teams have to manually review the codebase to determine what the appropriate next step is.

Conclusion

Modern code linters play a pivotal role in the development process, enabling developers to improve code quality and security, and should serve as more than just another testing or error monitoring tool. By Offering robust real-time insights, including detailed context for every issue flagged, clear guidance on fixing those issues and best practices for avoiding them, programmers get better at their job in the long term and enterprises will reap major benefits from improved developer skills and efficiency.

Nicolas Bontoux is VP Product Marketing at SonarSource
Share this

Industry News

May 01, 2025

Check Point® Software Technologies Ltd.(link is external) announced that its Quantum Firewall Software R82 — the latest version of Check Point’s core network security software delivering advanced threat prevention and scalable policy management — has received Common Criteria EAL4+ certification, further reinforcing its position as a trusted security foundation for critical infrastructure, government, and defense organizations worldwide.

May 01, 2025

Postman announced full support for the Model Context Protocol (MCP), helping users build better AI Agents, faster.

May 01, 2025

Opsera announced new Advanced Security Dashboard capabilities available as an extension of Opsera's Unified Insights for GitHub Copilot.

May 01, 2025

Lineaje launched new capabilities including Lineaje agentic AI-powered self-healing agents that autonomously secure open-source software, source code and containers, Gold Open Source Packages and Gold Open Source Images that enable organizations to source trusted, pre-fixed open-source software, and a software crawling and analysis engine, SCA360, that discovers and contextualizes risks at all software development stages.

April 30, 2025

Lenses.io announced the release of Lenses 6.0, enabling organizations to modernize applications and systems with real-time data as AI adoption accelerates.

April 30, 2025

Sonata Software has achieved Amazon Web Services (AWS) DevOps Competency status.

April 29, 2025

vFunction® announced significant platform advancements that reduce complexity across the architectural spectrum and target the growing disconnect between development speed and architectural integrity.

April 29, 2025

Sonatype® introduced major enhancements to Repository Firewall that expand proactive malware protection across the enterprise — from developer workstations to the network edge.

April 29, 2025

Aqua Security introduced Secure AI, full lifecycle security from code to cloud to prompt.

April 29, 2025

Salt Security announced the launch of the Salt Model Context Protocol (MCP) Server, giving enterprise teams a novel access point of interaction with their API infrastructure, leveraging natural language and artificial intelligence (AI).

April 28, 2025

The Cloud Native Computing Foundation® (CNCF®), which builds sustainable ecosystems for cloud native software, announced the graduation of in-toto, a software supply chain security framework developed at the NYU Tandon School of Engineering.

April 28, 2025

SnapLogic announced the launch of its next-generation API management (APIM) solution, helping organizations accelerate their journey to a composable and agentic enterprise.

April 28, 2025

Apiiro announced Software Graph Visualization, an interactive map that enables users to visualize their software architectures across all components, vulnerabilities, toxic combinations, blast radius, data exposure and material changes in real time.

April 24, 2025

Check Point® Software Technologies Ltd.(link is external) and Illumio, the breach containment company, announced a strategic partnership to help organizations strengthen security and advance their Zero Trust posture.