What Role Does AI Play in Reconditioning DevOps?
September 10, 2020

Chandra Shekhar
Adeptia

DevOps, as we know, started in 2008 and began taking structure in 2009 with Patrick Debois and Andrew Clay Shafer delivering their first speech in the DevOpsDays event held in Belgium

The entire objective of DevOps was to bring myriad cultural philosophies, practices, and tools under the same roof so that organizations could deliver applications, products, and services at high velocity — to better serve their customers and gain a competitive edge. However, in truth, adopting a DevOps approach, and to capitalize on its benefits, offers a multitude of concerns — it's easier said than done.

Ever since the conception, application development, as well as infrastructure ops communities, brought many DevOps related concerns to the surface, which have resulted in the burgeoning of several forms and stages to modularize DevOps.


Challenges of Implementing DevOps

While embarking on the DevOps journey, companies have to face a number of transformative challenges. First, they must change the workplace culture to embrace DevOps, which is a long-term process which also requires a lot of patience and endurance. Second, users need to deploy infrastructure as code along with microservices for quicker development along with sharp innovations. Moreover, they need to upgrade their hardware and software systems so that new systems can co-exist with the existing systems. 

Even after embracing DevOps, organizations face challenges at every step. As the user goes traverses through stages like Agile, ArchOps, TestOps, DataOps, SRE, WinOps and SAFe, they tend to experiences hiccups that can be primarily classified into 8 categories:

1. Source code engineering

2. Environment engineering

3. Test engineering

4. Release engineering

5. Feedback and tracking

6. Rollback and resiliency

7. Transparency and visibility

8. Developments through center of excellence

All these entities have increased complexity in handling applications that have evolved, and data flow which has become stateless to stateful across various endpoints. The voluminous information produced in all these transactions causes many bottlenecks, which if not addressed in time leads to service disasters.

Best Ways to Overcome These Challenges

These implementation challenges can be resolved by:

■ Bringing automation wherever necessary.

■ Identifying the risks ahead of time and fixing errors before their occurrence.

■ Introducing transparency and collaboration across all stakeholders.

Apparently, automation underpins the resolutions mentioned above. One of the tools that can facilitate this is Artificial Intelligence (AI).

Artificial intelligence cannot only help DevOps users address various challenges but also identify security threats, detect data leaks, organize memory management, to name a few. Let us take a closer look at the role of artificial intelligence/machine learning technologies in transforming a DevOps environment.


Power of AI in DevOps

In the current digital transformation era, AI has taken the center stage as it allows organizations implement DevOps practices in the best possible way. It allows organizations embrace the change and build a culture around innovation, keeping motivations high. So, the friction experienced while adopting a DevOps mindset gets eliminated.

AI can bring a huge change in the way businesses handle their data. Users can deal with large volumes of data and easily integrate it into a unified place with AI-powered data mapping software for better data quality and improved decision-making. Whether data is in XML or JSON or any other format, AI mapping (AI Map) technology claims to leverage it without compromising speed or capital. Plus, the integrity remains intact as AI removes errors introduced by human intervention.

Almost all industries such as robotics, automotive and manufacturing rely on AI for simplifying product development cycles. In short, implementing AI not only promotes data integration and data integrity but also boosts product development and releases with quality and efficiency.

Perks of AIOps

Infusion of AI in DevOps aka AIOps allows organizations to savor many benefits. Here are some benefits that can be achieved:

■ Reduced fear of change and inspired workforce to drive innovation and growth.

■ Accelerated mapping and integration of myriad data from different sources to drive BI and decision-making.

■ Automatic integration of important components of technology in the construct of an application type to streamline build and release tasks.
 
■ Improved intelligent data analysis and error-fixing before the execution of release pipeline.

■ Simplified onboarding of application with any number of patterns.

■ Increased knowledge base on error fixes based on application and infrastructure historical data.

Simply put, artificial intelligence/machine learning-powered technologies can transform DevOps and maximize outcomes with ease and speed. 

Chandra Shekhar is a Technology Analyst at Adeptia
Share this

Industry News

September 24, 2020

NetApp announced the availability of Elastigroup for Microsoft Azure Spot Virtual Machines (VMs).

September 24, 2020

CloudBees announced a robust new set of DevSecOps capabilities for CloudBees CI and CloudBees CD. The new capabilities enable customers to perform early and frequent security checks and ensure that security is an integral part of the whole software delivery pipeline workflow, without sacrificing speed or increasing risk.

September 24, 2020

Pulumi announced the release of a Pulumi-native provider for Microsoft Azure that provides 100% coverage of Azure Resource Manager (ARM), the deployment and management service for Azure that enables users to create, update and delete resources in their Azure accounts.

September 23, 2020

Puppet announced new Windows services, integrations and enhancements aimed at making it easier to automate and manage infrastructure using tools Windows admins rely on. The latest updates include services around Group Policy Migration and Chocolatey, as well as enhancements to the Puppet VS Code Extension, and a new Puppet PowerShell DSC Builder module.

September 23, 2020

Red Hat announced the release of Red Hat OpenShift Container Storage 4.5, delivering Kubernetes-based data services for modern, cloud-native applications across the open hybrid cloud.

September 23, 2020

Copado, a native DevOps platform for Salesforce, has acquired ClickDeploy.

September 22, 2020

CloudBees announced general availability of the first two modules of its Software Delivery Management solution.

September 22, 2020

Applause announced the availability of its Bring Your Own Testers (BYOT) feature that enables clients to manage their internal teams – employees, friends, family members and existing customers – and invite them to test cycles in the Applause Platform alongside Applause’s vetted and expert community of testers.

September 22, 2020

Kasten announced the integration of the K10 data management platform with VMware vSphere and Tanzu Kubernetes Grid Service.

September 21, 2020

PagerDuty entered into a definitive agreement to acquire Rundeck, a provider of DevOps automation for enterprise.

September 21, 2020

Grafana Labs announced the release of Grafana Metrics Enterprise, a modern Prometheus-as-a-Service solution designed for the scale, architecture, and security needs of enterprises as they expand their observability initiatives.

September 21, 2020

Portshift's Cloud Workload Protection platform is now available through the Red Hat Marketplace.

September 17, 2020

env0, a developer of Infrastructure-as-Code (IaC) management software, announced the availability of its new open source solution for Terraform users, Terratag.

September 17, 2020

Push Technology announced a partnership with Innova Solutions, an ACS Solutions company, specializing in global information technology services.

September 17, 2020

Alcide achieved the AWS Outposts Ready designation, part of the Amazon Web Services (AWS) Service Ready Program.