What Role Does AI Play in Reconditioning DevOps?
September 10, 2020

Chandra Shekhar
Adeptia

DevOps, as we know, started in 2008 and began taking structure in 2009 with Patrick Debois and Andrew Clay Shafer delivering their first speech in the DevOpsDays event held in Belgium

The entire objective of DevOps was to bring myriad cultural philosophies, practices, and tools under the same roof so that organizations could deliver applications, products, and services at high velocity — to better serve their customers and gain a competitive edge. However, in truth, adopting a DevOps approach, and to capitalize on its benefits, offers a multitude of concerns — it's easier said than done.

Ever since the conception, application development, as well as infrastructure ops communities, brought many DevOps related concerns to the surface, which have resulted in the burgeoning of several forms and stages to modularize DevOps.


Challenges of Implementing DevOps

While embarking on the DevOps journey, companies have to face a number of transformative challenges. First, they must change the workplace culture to embrace DevOps, which is a long-term process which also requires a lot of patience and endurance. Second, users need to deploy infrastructure as code along with microservices for quicker development along with sharp innovations. Moreover, they need to upgrade their hardware and software systems so that new systems can co-exist with the existing systems. 

Even after embracing DevOps, organizations face challenges at every step. As the user goes traverses through stages like Agile, ArchOps, TestOps, DataOps, SRE, WinOps and SAFe, they tend to experiences hiccups that can be primarily classified into 8 categories:

1. Source code engineering

2. Environment engineering

3. Test engineering

4. Release engineering

5. Feedback and tracking

6. Rollback and resiliency

7. Transparency and visibility

8. Developments through center of excellence

All these entities have increased complexity in handling applications that have evolved, and data flow which has become stateless to stateful across various endpoints. The voluminous information produced in all these transactions causes many bottlenecks, which if not addressed in time leads to service disasters.

Best Ways to Overcome These Challenges

These implementation challenges can be resolved by:

■ Bringing automation wherever necessary.

■ Identifying the risks ahead of time and fixing errors before their occurrence.

■ Introducing transparency and collaboration across all stakeholders.

Apparently, automation underpins the resolutions mentioned above. One of the tools that can facilitate this is Artificial Intelligence (AI).

Artificial intelligence cannot only help DevOps users address various challenges but also identify security threats, detect data leaks, organize memory management, to name a few. Let us take a closer look at the role of artificial intelligence/machine learning technologies in transforming a DevOps environment.


Power of AI in DevOps

In the current digital transformation era, AI has taken the center stage as it allows organizations implement DevOps practices in the best possible way. It allows organizations embrace the change and build a culture around innovation, keeping motivations high. So, the friction experienced while adopting a DevOps mindset gets eliminated.

AI can bring a huge change in the way businesses handle their data. Users can deal with large volumes of data and easily integrate it into a unified place with AI-powered data mapping software for better data quality and improved decision-making. Whether data is in XML or JSON or any other format, AI mapping (AI Map) technology claims to leverage it without compromising speed or capital. Plus, the integrity remains intact as AI removes errors introduced by human intervention.

Almost all industries such as robotics, automotive and manufacturing rely on AI for simplifying product development cycles. In short, implementing AI not only promotes data integration and data integrity but also boosts product development and releases with quality and efficiency.

Perks of AIOps

Infusion of AI in DevOps aka AIOps allows organizations to savor many benefits. Here are some benefits that can be achieved:

■ Reduced fear of change and inspired workforce to drive innovation and growth.

■ Accelerated mapping and integration of myriad data from different sources to drive BI and decision-making.

■ Automatic integration of important components of technology in the construct of an application type to streamline build and release tasks.
 
■ Improved intelligent data analysis and error-fixing before the execution of release pipeline.

■ Simplified onboarding of application with any number of patterns.

■ Increased knowledge base on error fixes based on application and infrastructure historical data.

Simply put, artificial intelligence/machine learning-powered technologies can transform DevOps and maximize outcomes with ease and speed. 

Chandra Shekhar is a Technology Analyst at Adeptia
Share this

Industry News

June 25, 2024

JFrog has entered into a definitive agreement to acquire Qwak AI Ltd., creator of an AI and MLOps platform.

June 25, 2024

OutSystems announced that OutSystems Developer Cloud (ODC) has achieved SOC 2 attestation, a requirement of organizations deploying mission-critical systems and applications that manage sensitive personal data.

June 25, 2024

Bitwarden announced public beta availability for integrating Bitwarden Secrets Manager into Kubernetes workflows for developers and DevOps teams.

June 25, 2024

GitLab achieved “In Process” designation at the Moderate impact level from the Federal Risk and Authorization Management Program (FedRAMP).

June 24, 2024

Grid Dynamics announced its AI for Developer Productivity Toolkit.

June 24, 2024

Multiplayer, a collaborative developer platform for teams who work on distributed software, officially announced its General Availability.

June 24, 2024

DataStax announced major updates to its Generative AI development platform that help make retrieval augmented generation (RAG) powered application development 100X faster.

June 24, 2024

Kobiton announced that its mobile app testing platform now supports the beta version of iOS 18.

June 20, 2024

Oracle announced new application development capabilities to enable developers to rapidly build and deploy applications on Oracle Cloud Infrastructure (OCI).

June 20, 2024

SUSE® announced new capabilities across its Linux, cloud native, and edge portfolio of enterprise infrastructure solutions to help unlock the infinite potential of open source in enterprises.

June 20, 2024

Redgate Software announced the acquisition of DB-Engines, an independent source of objective data in the database management systems market.

June 18, 2024

Parasoft has achieved "Awardable" status through the Chief Digital and Artificial Intelligence Office's (CDAO) Tradewinds Solutions Marketplace.

June 18, 2024

SmartBear launched two innovations that fundamentally change how both API and functional tests are performed, integrating SmartBear HaloAI, trusted AI-driven technology, and marking a significant step forward in the company's AI strategy.

June 18, 2024

Datadog announced the general availability of Datadog App Builder, a low-code development tool that helps teams rapidly create self-service applications and integrate them securely into their monitoring stacks.

June 17, 2024

Netlify announced a new Adobe Experience Manager integration to ease the transition from legacy web architecture to composable architecture.