The Merging of Traditional QA and Monitoring is the Future of Dev
April 12, 2021

Richard Whitehead

We're all familiar with the process of QA within the software development cycle. Developers build a product and send it to QA engineers, who test and bless it before pushing it into the world. After release, a different team of SREs with their own toolset then monitor for issues and bugs. Now, a new level of customer expectations for speed and reliability have pushed businesses further toward delivering rapid product iterations and innovations to keep up with customer demands. This leaves little time to run the traditional development process. QA can no longer act as a major, individual step.

Fortunately, modern, automated infrastructure as code (IAC)-built toolchains that deliver continuous observability now let SRE teams watch the entire build pipeline from the first piece of code through release. This enables a whole new speed within the delivery cycle and merges the traditional roles of QA and monitoring.

Helping "the Human in the Middle"

Without a proper QA process, any change dev teams make to digital systems can have cascading effects on the infrastructure. This only further stresses the SRE team to find and fix issues after deployment. And changes are happening faster than ever. As a result, we meet the juxtaposition between the need for QA and the limited time to work the process into the development cycle as a standalone step.

Observability (mining deep data from distributed systems) delivers the data necessary to eliminate traditional QA, but that isn't enough. Humans still need help. When you apply AI to this observability data (intelligent observability), teams can analyze data at machine speed. This lets DevOps practitioners and SREs view the entire product lifecycle, from early development to daily performance, through the lens of quality.

The use of intelligent observability helps teams find the needle in the proverbial haystack of data — the root causes of issues within digital systems — instantly. It also helps identify actionable ways to quickly resolve a new product's impacts on the infrastructure. Without this capability, we revert to the old way of doing things where the dev team has QA find the needle instead. This new continuous learning and intelligent collaboration creates a merging of traditional QA and monitoring for a CI/CD pipeline that actually works.

Integrating observability with AI into the development cycle creates an opportunity to monitor expected outcomes much closer, enabling "the human in the middle" to spot change almost instantly. If the system starts behaving dramatically differently after a deployment, SREs and DevOps practitioners can see it and intervene immediately, without the need to wait for a QA team. If nothing changes or the system improves, they know there's no need to remediate a deployment.

In cases where a change in performance is expected, it was traditionally incumbent on the developer to modify the unit tests or to communicate the change to the QA team. Now, AI- and ML-based systems' change tolerance reduces IT teams' effort. For example, if you're monitoring a KPI with an adaptive thresholding algorithm, you can simply let the algorithm re-train and learn the new behavior instead of relying on the dev team to communicate the expected change in performance to QA.

Merged Systems Support DevOps Three Ways

A merged system of QA and monitoring throughout the development cycle also aligns with the DevOps Three Ways principles. We look at the First Way: flow/system thinking, the Second Way: amplifying feedback loops, and the Third Way: creating a culture of continual experimentation and learning, as the guiding principles behind DevOps practices.

The merging of traditional QA and monitoring supports the First Way — flow/system thinking — by building a holistic system view of the development process with the elimination of siloed workflows. This creates quality throughout development and delivery because the system is never optimized for local efficiency only or passed onto the next step with a known issue.

A merge also supports the Second Way — amplifying feedback loops — by giving IT teams clear, consistent feedback throughout the development and delivery process. As traditional QA and monitoring merge, the need to loop feedback through multiple teams with various processes and priorities evaporates.

This merge perhaps has the greatest impact on the Third Way. As DevOps practitioners focus on the holistic product cycle versus quick development that's passed off to QA, they can learn from bugs and build constant improvement into their process. This also gives them room to experiment and take risks. Infusing quality into the development process itself means they won't hand over garbage to the QA team — no matter how "out there" the forthcoming release might be.

Integrating observability with AI into the development cycle allows teams to not only see into systems as they're being built, but also identify actionable ways to resolve a new product's impacts on the overall infrastructure. As DevOps practitioners and SREs balance change, these actionable insights empower the merging of traditional QA and monitoring for a whole new speed of delivery — delivering better customer experiences and giving your business the ability to launch competitive, innovative services faster than ever.

Richard Whitehead is Chief Evangelist at Moogsoft
Share this

Industry News

May 25, 2022

JFrog introduced Project Pyrsia, an open-source software community initiative that utilizes blockchain technology to secure software packages (A.K.A Binaries) from vulnerabilities and malicious code.

May 25, 2022

Kasm Technologies, in partnership with Docker, has developed Kasm Workspaces as a Containerized Desktop Infrastructure platform for streaming remote workspaces directly to your web browser.

May 25, 2022

Cascadeo announced the integration of Amazon DevOps Guru with, Cascadeo’s cloud monitoring and management platform that provides users with a single view of multi-cloud or hybrid infrastructure environments.

May 24, 2022

Oracle announced the availability of Java 18, the latest version of the programming language and development platform.

May 24, 2022

Docker announced the acquisition of Tilt, makers of a development environment as code for teams on Kubernetes.

May 24, 2022

F5 announced the release of F5 NGINX for Microsoft Azure, an Azure-native service offering developed in partnership with Microsoft, that helps customers deliver modern applications on Azure with just a few clicks.

May 24, 2022

Pegasystems announced a strategic partnership with Google Cloud that will help enable joint clients to accelerate their digital transformations with Pega’s low-code enterprise software on Google Cloud’s highly scalable cloud services.

May 23, 2022

Sauce Labs announced the release of contract testing with mocking on the Sauce Labs API Testing Platform.

May 23, 2022

Pure Storage announced a series of updates to its Portworx portfolio.

May 23, 2022

StackHawk has secured $20.7 million in capital.

May 19, 2022

Jellyfish announced the launch of Jellyfish Benchmarks, a way to add context around engineering metrics and performance by introducing a method for comparison.

May 19, 2022 announced the addition and integration of Cilium networking into its Gloo Mesh platform, providing a complete application-networking solution for companies’ cloud-native digital transformation efforts.

May 19, 2022

Aqua Security announced multiple updates to Aqua Trivy, making it a unified scanner for cloud native security.

May 18, 2022

Red Hat unveiled updates across its portfolio of developer tools designed to help organizations build and deliver applications faster and more consistently across Kubernetes-based hybrid and multicloud environments.

May 18, 2022

Armory announced public early access to their new Continuous Deployment-as-a-Service product.