The Future of Quality Assurance: Key Insights
February 27, 2024

Salman Khan

Software development is on the rise, and so are the expectations around its quality. When it comes to ensuring quality, there are various quality assurance (QA) techniques. As a tester, you can leverage different QA strategies, such as prioritizing and optimizing QA processes through CI/CD adoption, test orchestration, AI-based tooling, and more. Also, addressing issues such as flaky tests and increasing observability will result in more efficient and effective quality assurance practices.

The Future of Quality Assurance survey from LambdaTest suggests that almost 78% of software testers have already adopted AI-driven tools to optimize their test process.

Adoption of AI in Test Automation

The rise of AI in test automation is very interesting! With 77.7% of organizations focusing on data creation, log analysis, and even test case generation, it's clear the potential is massive. But there are challenges too.

The biggest concerns? Reliability (60.3%) and skill gaps (54.4%). We need AI tools to be transparent and explainable, building trust with testers. And upskilling is crucial to bridge the knowledge gap and empower them to wield this new power effectively.

Click on chart above for larger image

The key lies in collaboration. AI developers must prioritize user-friendly interfaces and clear explanations. Industry leaders, training providers, and communities need to join forces to create accessible learning materials. And organizations should start small, scaling iteratively as they gain confidence.

It’s important to note that AI should augment, not replace, human expertise and ethical considerations, and human-AI collaboration is important. By working together, testers can leverage the true potential of AI to revolutionize test automation and deliver exceptional software quality.

Bandwidth of QA Teams

As per the survey, QA teams spend nearly 18% of their time setting up test environments and running flaky tests, which is a major bottleneck. However, in this case, the right tools can be game changers to detect flaky tests and perform root cause analysis to address unreliable tests. This translates into faster testing, improved collaboration, and lower costs.

Click on chart above for larger image

So, it is important to choose the right tools for your needs and strategically implement them to reap the benefits.

Culture of Testing

More than 70% of organizations include testers in sprint planning, but smaller teams fall behind. The difference is likely the result of limited resources and communication barriers.

Click on chart above for larger image

To bridge these gaps, emphasize the importance of testing, encourage shared ownership through cross-training, implement easy-to-use tools, and create effective communication channels. This will also help small teams reap the benefits of tester participation in sprint planning.

Adoption of CI/CD Processes

While 89.1% of teams have implemented CI/CD tools in their test process to speed up releases, 45% still run automated tests manually. It shows a gap between CI/CD adoption and its usage. This may be attributed to a different understanding, insufficient training, advanced tools that need a learning curve, or challenges with integration.

Click on chart above for larger image

To close this gap, organizations can increase awareness, drive cultural change, optimize techniques, and fix specific issues, ultimately realizing the full potential of CI/CD for faster delivery, higher quality, and low risks.

Test Intelligence and Analytics Gap

Around 30% of organizations need dedicated test intelligence infrastructure. It results in reactive testing and not-so-smooth resource allocation to measure testing effectiveness.

So, a viable option here is to invest in dedicated tools, making the most of your platforms, adopting structured reporting, and fostering a data-driven culture. This will help you not only optimize your testing processes but also deliver higher-quality software faster.

Click on chart above for larger image

Challenges in Prioritizing Tests

While the stats are promising, with 77.7% of organizations embracing AI/ML in test automation, challenges remain there due to reliability concerns (60.3%), and skill gaps (54.4%). Addressing these through user-friendly tools, comprehensive training, and iterative adoption is critical.

The future is bright, but ethical considerations and the importance of human-AI collaboration must be addressed.

Click on chart above for larger image

Closing Thoughts

While AI in test data creation, test analysis, and test cases shows promise for 77.7% of organizations, reliability concerns (60.3%) and skill gaps (54.4%) remain key hurdles. Testers can address these with user-friendly AI tools, training, and iterative adoption.

Remember, AI augments but does not replace human expertise. It is important to prioritize and optimize testing through CI/CD, test orchestration, and AI tools, addressing flaky tests for faster, more efficient processes. Side-by-side, foster a testing culture with tester inclusion in sprint planning, especially in smaller teams, and provide easy-to-use tools for better communication and collaboration.

Developers and testers can bridge the CI/CD gap with cultural change, technique optimization, and addressing integration challenges to unlock its full potential. Additionally, invest in dedicated test intelligence tools and leverage existing platforms, adopting structured reporting and a data-driven culture for optimized testing and faster, high-quality software delivery.

The future of QA is not just about tools but collaboration, continuous learning, and a shared commitment to excellence. By focusing on these key areas, QA professionals can harness technology, empower people, and deliver exceptional software quality in the future.

Salman Khan is Asst. Digital Marketing Manager at LambdaTest
Share this

Industry News

April 11, 2024

Check Point® Software Technologies Ltd. announced new email security features that enhance its Check Point Harmony Email & Collaboration portfolio: Patented unified quarantine, DMARC monitoring, archiving, and Smart Banners.

April 11, 2024

Automation Anywhere announced an expanded partnership with Google Cloud to leverage the combined power of generative AI and its own specialized, generative AI automation models to give companies a powerful solution to optimize and transform their business.

April 11, 2024

Jetic announced the release of Jetlets, a low-code and no-code block template, that allows users to easily build any technically advanced integration use case, typically not covered by alternative integration platforms.

April 10, 2024

Progress announced new powerful capabilities and enhancements in the latest release of Progress® Sitefinity®.

April 10, 2024

Buildkite signed a multi-year strategic collaboration agreement (SCA) with Amazon Web Services (AWS), the world's most comprehensive and broadly adopted cloud, to accelerate delivery of cloud-native applications across multiple industries, including digital native, financial services, retail or any enterprise undergoing digital transformation.

April 10, 2024

AppViewX announced new functionality in the AppViewX CERT+ certificate lifecycle management automation product that helps organizations prepare for Google’s proposed 90-day TLS certificate validity policy.

April 09, 2024

Rocket Software is addressing the growing demand for integrated security, compliance, and automation in software development with its latest release of Rocket® DevOps, formerly known as Aldon®.

April 09, 2024

Wind River announced the latest release of Wind River Studio Developer, an edge-to-cloud DevSecOps platform that accelerates development, deployment, and operation of mission-critical systems.

April 09, 2024

appCD announced its generative infrastructure from code solution now supports Azure Kubernetes Service (AKS).

April 09, 2024

Synopsys announced the availability of Black Duck® Supply Chain Edition, a new software composition analysis (SCA) offering that enables organizations to mitigate upstream risk in their software supply chains.

April 09, 2024

DataStax announced innovative integrations with API extensions to Google Cloud’s Vertex AI Extension and Vertex AI Search, offering developers an easier time leveraging their own data.

April 08, 2024

Parasoft introduced C/C++test CT, a comprehensive solution tailored for large teams engaged in the development of safety- and security-critical C and C++ products.

April 08, 2024

Endor Labs announced a strategic partnership with GuidePoint Security.

April 08, 2024

Hasura announced the V3 of its platform, providing on-demand API composability with a new domain-centric supergraph modeling framework, a distributed supergraph execution engine and a rich and extensible ecosystem of open source connectors to address the challenges faced during integration of data and APIs.

April 04, 2024

DataStax has entered into a definitive agreement to acquire AI startup, Logspace, the creators of Langflow, an open source visual framework for building retrieval-augmented generation (RAG) applications.1