The Convergence of Software and Hardware in the Era of Digital Twins
April 22, 2024

Adam Sandman
Inflectra

A transformative shift is happening at the intersection of software and hardware — particularly in the realm of digital twins — as the lines between software and hardware blur. As a result, organizations need to adapt quickly to this dynamic landscape.

While traditional electronics are making way for "software-defined manufacturing," embedded software is also gaining ground in smart medical devices, IoT products, and more.

What is software-defined manufacturing? Essentially, software-defined manufacturing systematically optimizes and modernizes all aspects of manufacturing, from storage, connectivity, and security to hardware. It feeds data from embedded intelligence across the IT and OT landscapes to the underlying software, making the unified system work seamlessly for optimal efficiency.

As a result, in today's business landscape, discrete electronics are being rapidly replaced with "software-defined manufacturing." On the other hand, discrete manufacturing is witnessing a significant shift as traditional assembly lines are phased out in favor of 3D printing. This revolution enables the mass production of customized goods with flexibility for real-time design adjustments. At the same time, embedded software is now becoming the norm.

While the tools in the software world are relatively mature and proven, in the hardware/hybrid world — apart from CAD products, which are the lone exception — companies are left to struggle with outdated processes and systems like spreadsheets and documents.

This is where digital twins come in.

A digital twin creates a virtual model of any physical object. Spanning the object's lifecycle, it uses real-time data sent from sensors attached to that object to simulate the object’s behavior and monitor its real-time operations.

This cutting-edge technology is helping revolutionize the way hardware systems are designed, visualized, integrated, and tested. By simulating physical objects in a digital environment, companies can quickly reduce prototyping costs, align hardware development with software processes, and streamline the entire product development lifecycle.

In short, digital twins can reduce the costs associated with prototyping and integrating before building systems. They also help better align hardware design, development, and testing with their fellow software cousins.

However, navigating this new frontier requires reimagining traditional product development approaches. As a result, there is a growing need for a more robust and effective hybrid-driven approach that ultimately blends software development methodologies seamlessly — such as blending agile and DevOps with the management of the hardware product lifecycle.

However, doing so presents new challenges and opportunities when it comes to managing requirements and testing across software and hardware components or developing strategies for integrating, deploying, and managing hybrid systems effectively.

This new world, marked by a different product development lifecycle, calls for a more thoughtful approach to integration, deployment, and management of the hardware/software hybrid systems and is required to effectively blend software development, agility, and DevOps with the old hardware product lifecycle management.

Companies must carefully manage these requirements and thoroughly test all software and hardware components (including any digital twins) to ensure successful integration.

Adam Sandman is CEO and Founder of Inflectra
Share this

Industry News

May 16, 2024

Pegasystems announced the general availability of Pega Infinity ’24.1™.

May 16, 2024

Mend.io and Sysdig unveiled a joint solution to help developers, DevOps, and security teams accelerate secure software delivery from development to deployment.

May 16, 2024

GitLab announced new innovations in GitLab 17 to streamline how organizations build, test, secure, and deploy software.

May 16, 2024

Kobiton announced the beta release of mobile test management, a new feature within its test automation platform.

May 15, 2024

Gearset announced its new CI/CD solution, Long Term Projects in Pipelines.

May 15, 2024

Rafay Systems has extended the capabilities of its enterprise PaaS for modern infrastructure to support graphics processing unit- (GPU-) based workloads.

May 15, 2024

NodeScript, a free, low-code developer environment for workflow automation and API integration, is released by UBIO.

May 14, 2024

IBM announced IBM Test Accelerator for Z, a solution designed to revolutionize testing on IBM Z, a tool that expedites the shift-left approach, fostering smooth collaboration between z/OS developers and testers.

May 14, 2024

StreamNative launched Ursa, a Kafka-compatible data streaming engine built on top of lakehouse storage.

May 14, 2024

GitKraken acquired code health innovator, CodeSee.

May 13, 2024

ServiceNow introduced a new no‑code development studio and new automation capabilities to accelerate and scale digital transformation across the enterprise.

May 13, 2024

Security Innovation has added new skills assessments to its Base Camp training platform for software security training.

May 13, 2024

CAST introduced CAST Highlight Extensions Marketplace — an integrated marketplace for the software intelligence product where users can effortlessly browse and download a diverse range of extensions and plugins.

May 09, 2024

Red Hat and Elastic announced an expanded collaboration to deliver next-generation search experiences supporting retrieval augmented generation (RAG) patterns using Elasticsearch as a preferred vector database solution integrated on Red Hat OpenShift AI.

May 09, 2024

Traceable AI announced an Early Access Program for its new Generative AI API Security capabilities.