ngrok unveiled its JavaScript and Python SDKs, enabling developers to programmatically serve their applications and manage traffic by embedding ingress with a single line of code.
Timescale announced the launch of Timescale Vector, enabling developers to build production AI applications at scale with PostgreSQL.
With Timescale Vector, which sits atop Timescale’s production-grade cloud PostgreSQL platform, developers can now leverage a single platform for managing relational data, vector embeddings, time-series data, analytics and event data that powers their next-generation AI applications. Developers can bring AI products to market faster, more reliably and efficiently than with traditional vector databases.
Timescale Vector benefits developers and their teams by:
- Simplifying the AI application stack, giving developers a single place for the relational data, vector embeddings, and time-series, analytics, and event data that powers their next-generation AI applications. This removes the need for developers to manage another piece of infrastructure and minimizes the operational complexity of data duplication, synchronization, and keeping track of updates across multiple systems. Because Timescale Vector is still PostgreSQL, it inherits the 30+ years of battle testing, robustness, and reliability of PostgreSQL, giving developers more peace of mind about their database choice for data that’s critical to a great user experience.
- Speeding up ANN search on millions of vectors, enhancing pgvector with a state-of-the-art Approximate Nearest Neighbor (ANN) index inspired by the DiskANN algorithm, in addition to offering pgvector’s HNSW and ivfflat indexing algorithms.
- Optimizing time-based vector search, leveraging automatic time-based partitioning and indexing to efficiently find recent embeddings, constrain vector search by a time range or document age, and store and retrieve LLM response and chat history with ease.
- Simplifying the handling of metadata and multi-attribute filtering, as developers can leverage all PostgreSQL data types to store and filter metadata, JOIN vector search results with relational data for more contextually relevant responses, and write full SQL relational queries incorporating vector embeddings.
“We launched Timescale over six years ago with the idea that we’re more than just a PostgreSQL extension -- we’re making PostgreSQL easier, faster, and more cost effective for developers building data-intensive applications,” said Ajay Kulkarni, CEO and Co-founder, Timescale. “The launch of Timescale Vector signifies our commitment to continuing to solve the biggest developer pain points so they can focus on building new AI applications more efficiently on a database foundation that’s fast, reliable and battle-tested.”
Timescale Vector is available now in early access on Timescale, the PostgreSQL cloud platform, for new and existing customers. During the Early Access period, Timescale Vector will be free to use for all Timescale new and existing customers.
Industry News
Data Theorem introduced API Attack Path Visualization capabilities for the protection of APIs and the software supply chain.
Security Journey announced support for WCAG, SCIM and continued compliance with SOC2 Type 2, which are leading industry standards.
Vercel announced a new suite of features for its Developer Experience (DX) Platform, made for enterprise teams with large codebases.
Atlassian Corporation has completed the acquisition of Loom, a video messaging platform that helps users communicate through instantly shareable videos.
Orca Security announced that the Orca Cloud Security Platform has achieved the Amazon Web Services (AWS) Built-in Competency.
Parasoft, a global leader in automated software testing solutions, today announced complete support for MISRA C++ 2023 with the upcoming release of Parasoft C/C++test 2023.2.
Solo.io achieved the Amazon Elastic Kubernetes Service (Amazon EKS) Ready designation from Amazon Web Services (AWS).
CircleCI implemented a gen2 GPU resource class, leveraging Amazon Elastic Compute Cloud (Amazon EC2) G5 instances, offering the latest generation of NVIDIA GPUs and new images tailored for artificial intelligence/machine learning (AI/ML) workflows.
XM Cyber announced new capabilities that provide complete and continuous visibility into risks and vulnerabilities in Kubernetes environments.
PerfectScale has achieved the Amazon Elastic Kubernetes Service (Amazon EKS) Ready designation from Amazon Web Services (AWS).
BMC announced two new product innovations, BMC AMI DevX Code Insights and BMC AMI zAdviser Enterprise.
Rafay Systems announced the availability of the Rafay Cloud Automation Platform — the evolution of its Kubernetes Operations Platform — to enable platform teams to deliver automation and self-service capabilities to developers, data scientists and other cloud users.
Bitrise is integrating with Amazon Web Services (AWS) to provide compliance-conscious companies with greater access to CI/CD capabilities for mobile app development.
Armory announced a new unified declarative deployment capability for AWS Lambda.