The 5 Longest Lead Times in Software Delivery - Part 2
March 09, 2017

Mark Levy
Micro Focus

Every enterprise IT organization is unique in that it will have different bottlenecks and constraints in its deployment pipelines. With that being said, there are some common problem areas that typically produce the longest lead times in your software delivery process. Here are three more most common areas that generate the longest lead times.

Start with The 5 Longest Lead Times in Software Delivery - Part 1

3. Environment Management and Provisioning

The effective and efficient management of dev, test and production environments is critical to a successful release deployment. The combination of increased business requests, the large number of applications, and multiple application infrastructures have exponentially increased the complexity of managing these environments. There is nothing more demoralizing to a dev team than having to wait to get an environment to test a new feature. Lack of environment availability and/or environment contention can create extremely long lead times, delay releases, and increase the cost of release deployments. Dev and Test environments also often are misconfigured or are so different from production environments that they end up with production problems despite having passed preproduction testing.

Creating these environments is a very repetitive task that should be documented, automated, and put under revision control. You need to implement a process to schedule, manage, track, and control all of the environments in your deployment pipeline. Automated and self-service environmental provisioning will streamline the process to reduce lead times. The environments you create need to be as "production-like" as possible. Your developers will also be far more productive and happy. As you automate the provisioning of your environments your MTTR (mean-time-to-repair) will go down significantly as you will be able to replace your environments on a moment's notice and begin to move towards an immutable infrastructure.

4. Manual Software Deployments

People should not move or deploy the "bits" as machines are far better and much more consistent at deploying applications than humans. You would be surprised at the number of organizations that still manually deploy their code. Automating manual deployment tasks is one of the first things you should look at. You can get a lot of quick wins with automation, and this approach can be delivered rapidly without major organizational changes. The initial effort to document and automate your deployment processes pays off once you start letting the machines perform the work. It is not uncommon for organizations to see deployment lead times reduced by over 90%.

Automate your code and configuration deployments with a single set of deployment processes across all environments. Ensure that these deploy from the same source. Deploying the same way across all of your environments is extremely efficient in both time and cost. By using the same process, it gets tested more often and any environmental issues will be easier to identify. All preproduction deployments should be rehearsals for the final deployment into production. The more automated this process is, the more repeatable and reliable it will be. When it's time to deploy to production, you will be ready. This translates into dramatically lower lead times, less downtime and keeps the business open so that it can make more money.

5. Manual Software Testing

Once the environment is ready and the code is deployed, it's time to test to ensure the code is working as expected and doesn't break anything else. The problem is that most organizations today manually test their code base. Manual software testing drives lead times up because the process is very slow, error prone and expensive to scale out across large organizations. As the velocity of software delivery increases, you have to exponentially increase the number of human resources to test the software changes. Furthermore, manual testing provides lower overall coverage. The time and expense of manual testing forces organizations into the "Batch and Queue" mode which slows the overall flow and dramatically increases lead times.

Automated testing is a prime area to focus on when you need to reduce lead times. Automated testing is less expensive, more reliable and repeatable, can provide broader coverage, and is a lot faster. There will be an initial cost of developing the automated test scripts, but a lot of that can be absorbed by shifting manual tester resources to "Test Development Engineers" to focus on automated API-based testing. Over time your manual testing costs and lead times will go down as your quality improves.

Summary

The velocity and complexity of software delivery continues to increase as businesses adapt to new economic conditions. Optimizing and automating your deployment pipelines will dramatically reduce your lead times and enable you to deliver software faster and with better quality. Delivering software faster means businesses can innovate and test out new ideas more quickly. The business can deliver features and bring on new revenue streams faster, making them agile enough to respond immediately to marketplace opportunity, events and trends.

Mark Levy is Director of Strategy, Software Delivery at Micro Focus
Share this

Industry News

December 01, 2022

Salesforce introduced a new Automation Everywhere Bundle to accelerate end-to-end workflow orchestration, automate across any system, and embed data and AI-driven workflows anywhere.

December 01, 2022

Weaveworks announced that Flux, the original GitOps project, has graduated in the Cloud Native Computing Foundation (CNCF®).

December 01, 2022

Tigera announced enhancements to its cluster mesh capabilities for managing multi-cluster environments with Calico.

December 01, 2022

CloudBees achieved the Amazon Web Service (AWS) Service Ready Program for Amazon Elastic Compute Cloud (Amazon EC2) Spot Instances.

November 30, 2022

GitLab announced the limited availability of GitLab Dedicated, a new way to use GitLab - as a single-tenant software as a service (SaaS) solution.

November 30, 2022

Red Hat announced an expansion of its open solutions publicly available in AWS Marketplace.

November 30, 2022

Sisense announced the availability of the Sisense CI/CD Git integration module.

November 29, 2022

Codenotary announced TrueSBOM for Serverless, a self-updating Software Bill of Materials (SBOM) for applications running on AWS Lamda, Google Cloud Functions and Microsoft Azure Functions that is made possible by simply adding one line to the application source code.

November 29, 2022

Code Intelligence announced its open-source Command-Line Interface (CLI) tool, CI Fuzz CLI, now allows Java developers to easily incorporate fuzz testing into their existing JUnit setup in order to find functional bugs and security vulnerabilities at scale.

November 29, 2022

Parasoft announced the 2022.2 release of Parasoft C/C++test with support for MISRA C:2012 Amendment 3 and a draft version of MISRA C++ 202x.

November 28, 2022

Kasm Technologies announced the release of Kasm Workspaces v1.12, providing major enhancements to its portfolio of digital workspaces delivering Desktop as a Service (DaaS), Virtualized Desktop Infrastructure (VDI), Remote Browser Isolation (RBI), Open-Source Intelligence Collection (OSINT), Training/Sandboxes, and Containerized Application Streaming (CAS).

November 28, 2022

Cloud4C has achieved Amazon Web Services (AWS) DevOps Competency status.

November 28, 2022

Simplilearn has acquired Fullstack Academy, for an all-cash transaction.

November 22, 2022

Red Hat introduced Red Hat Enterprise Linux 9.1and Red Hat Enterprise Linux 8.7.

November 22, 2022

Armory announced its new cloud-based solution called Continuous Deployment-as-a-Service, now available on the AWS Marketplace.