A Smarter, Data Science-Driven Approach to Operations
December 04, 2015

Amit Sasturkar
OpsClarity

Data science and machine learning algorithms have become pervasive throughout the modern consumer world. There are many successful applications of machine learning in consumer products that we use on a daily basis, including:

■ Movie, music and product recommendations

■ Ad targeting

■ Web search

But, when we look at the Ops world, we find that there is no breakthrough product that incorporates these same machine learning innovations.

A relevant comparison is with page-level and host-level features (for example, page rank for URLs or host rank for hosts) used in search ranking. These features are typically a function of the WebMap (the massive graph where nodes are URLs, and edges are hyperlinks between URLs). The page rank algorithm allows the ranking of URLs in the WebMap based on the hyperlinks between them. It is a very effective way to get a reasonable estimate of the overall importance of a URL.

What if we used similar ideas to rank the hundreds or sometimes thousands of alerts that operations engineers receive, especially when they are managing hundreds of machines? What is the equivalent of the WebMap in the Ops world?

Another relevant example is provided by duplicate web page detection. These algorithms run as MapReduce jobs on massive Hadoop clusters (thousands of machines) and detect duplicate pages across tens of billions of web pages. When the mappers or reducers fail or when there are performance degradations, hundreds of alerts are generated, many of them for the same underlying root cause.

What if we applied the techniques of web page duplicate detection to eliminate the duplicate and unnecessary alerts received by Ops?

A third big challenge is personalization of content. Personalization is a well-studied problem in the consumer space, with user feedback — both implicit (clicks and actions) and explicit (reviews and ratings) — contributing critical inputs to the learning algorithms. Employing this type of machine learning means that the more time a user spends with a product, the better their user experience will be.

What if we incorporated feedback to learn Ops users’ preferences and continuously improve the accuracy of alert generation and alert ranking?

The answers to these questions will become evident as we bring the innovations in data science and machine learning that are commonplace in the consumer world to the Ops world. DevOps teams need, in effect, an “expert assistant” that can learn their application and system environment, detect and correlate failures, and make recommendations that drive increased focus and productivity — even as everything is continuously changing. It’s time for Ops to get smarter.

Amit Sasturkar is Co-Founder and CTO of OpsClarity.

Share this

Industry News

July 09, 2020

ShiftLeft released a new version of NextGen Static Analysis (NG SAST), including new workflows, purpose-built for developers that significantly improve security, while enhancing productivity.

July 09, 2020

RunSafe Security announced a partnership with JFrog that will enable RunSafe to supercharge binary protections via a simple plugin that JFrog users can deploy within their Artifactory repositories and instantly protect binaries and containers.

July 09, 2020

LeanIX closed $80 million in Series D funding led by new investor Goldman Sachs Growth.

July 08, 2020

Afi.ai introduced Afi Data Platform, a cloud-based replication and resiliency service that helps to monitor, predict downtime and recover K8s applications.

July 08, 2020

D2iQ announced the release of Conductor, a new interactive learning platform that enables enterprises to access hands-on cloud native courses and training.

July 08, 2020

SUSE entered into a definitive agreement to acquire Rancher Labs.

July 07, 2020

Micro Focus announced AI-powered enhancements to the intelligent testing capabilities of the UFT Family, a unified set of solutions designed to reduce the overall complexity of automating the functional testing processes.

July 07, 2020

Push Technology announced the launch of a new Service API capability for Diffusion Cloud, Push’s Real-Time API Management Cloud Platform.

July 07, 2020

Lightrun exited stealth and announced $4M in seed funding for the first complete continuous debugging and observability platform for production applications.

July 01, 2020

JFrog announced the launch of ChartCenter, a free, security-focused central repository of Helm charts for the community.

July 01, 2020

Kong announced a significant upgrade to open source Kuma, Kuma 0.6, available today.

July 01, 2020

Compuware Corporation, a BMC company, announced new capabilities that further automate and integrate test data and test case execution, empowering IT teams to achieve high-performance application development quality, velocity and efficiency.

June 30, 2020

Couchbase announced the general availability of Couchbase Cloud, a fully-managed Database-as-a-Service (DBaaS).

June 30, 2020

Split Software announced new capabilities designed to accelerate the adoption of feature flags in large-scale organizations.

June 30, 2020

WhiteHat Security announced a discounted Web + Mobile Application Security bundle to help organizations secure the digital future.