6 Ways Cloud AI Developer Services Help Engineering Teams
June 23, 2022

Jayne Groll
DevOps Institute

Engineering teams balance many responsibilities in the development, monitoring and production of enterprise software. With modern insights and access to massive amounts of data, these teams have the opportunity to provide top-notch service to customers, higher-quality products and faster release cycles.

As DevOps transformations move enterprise organizations to the cloud, Cloud AI Developer Services help elevate and advance the software development lifecycle. By definition (according to Gartner), Cloud AI developer Services (CAIDS) are "cloud-hosted services/models that allow development teams to leverage AI models via APIs, without requiring deep data science expertise.” Cloud providers such as AWS, Azure, GCP, IBM and Oracle now offer these services.

When AI and cloud are combined, teams can store and analyze data in ways that empower more intelligent business and IT decisions. With Cloud AI services, engineering teams benefit from added capabilities such as natural language understanding, image recognition and automated machine learning.

Cloud AI developers often work with data engineers, machine learning engineers, and data scientists. They also maintain those systems to ensure everything is running smoothly. Google CAIDS offerings, for example, are made by developers for developers, and they approach development with empathy for the developer experience. Cloud-based AI services are not about replacing individual developers or engineering teams' roles but instead, helping them achieve their goals faster and more effectively through powerful technology.

Some of the ways that CAIDS provide support to engineering teams include:

Solving various business challenges using AI software

AI can help engineering teams leverage machine learning, to better understand and predict customer behavior and preferences to offer a more personalized experience. Not only does this help the organization solve customer challenges, but it creates a competitive advantage.

Designing, developing, implementing, and monitoring AI systems

AI can automate tasks and manage manual workflows to improve the engineering team’s productivity. When cloud and AI are combined, there is potential for access to massive amounts of data, providing more opportunities to be strategic and insight-driven. Additionally, as many cloud providers now offer CAIDS via APIs or applications, engineering teams can easily incorporate an AI system. Some of these services are offered through low-code or no-code options.

Explain to project managers and stakeholders the potential and limitations of AI systems

As teams leverage AI for data analysis, they are able to advise on how to make better business decisions. They can also notify other company stakeholders about limitations, such as lag time in data transmission, that can impact the analysis speed of machine learning algorithms.

Develop data ingest and data transformation architecture

CAIDS can also improve data ingestion — the process of transporting data from one location to another so it can be processed and analyzed. With access to CAIDS APIs, engineering teams can also leverage a data transformation architecture that will convert data, facilitating better insights without needing extensive data science knowledge.

New AI technologies to implement within the business

AI services will continue to emerge that will transform the way that companies interact with the customer.

Training teams when it comes to the implementation of AI systems

CAIDS makes it easy for engineering teams to train on how to best leverage AI services and APIs.

Where cloud computing and AI-driven applications meet, engineering teams leverage massive amounts of data for continuous improvement and delivery. It also offers the opportunity to delight customers by predicting their behavior without needing to fill in data science knowledge gaps. On June 30, 2022, DevOps Institute is hosting SKILup Day: Cloud and AI. Continue to learn about CAIDS and how these services and models can help you develop intelligent applications without requiring deep data science experience.

Register for SKILup Day: Cloud and AI

Jayne Groll is CEO of DevOps Institute
Share this

Industry News

June 29, 2022

Progress announced the latest release of Progress Flowmon.

June 29, 2022

CodeSee announced the launch of Open Source Hub (OSH).

June 29, 2022

Ambassador Labs announced the newest release of Ambassador Edge Stack, an integrated edge solution that empowers developer teams to quickly configure the edge services required to build, deliver, and scale applications for Kubernetes.

June 29, 2022

Ondat released into general availability version 2.8 of its Ondat platform for stateful workloads in Kubernetes.

June 28, 2022

Hewlett Packard Enterprise (HPE) unveiled platform enhancements and new cloud services for HPE GreenLake, the company’s flagship offering that enables organizations to modernize all their applications and data.

June 28, 2022

Sysdig announced Drift Control to prevent container attacks at runtime. Teams can detect, prevent, and speed incident response for containers that were modified in production, also known as container drift.

June 28, 2022

ShiftLeft announced an investment from and go-to-market partnership with Wipro Ventures.

June 27, 2022

Delinea announced the latest release of DevOps Secrets Vault.

June 27, 2022

Jit announced a $38.5 million seed funding round and launched a free beta version which automates product security.

June 27, 2022

Platform.sh raised $140 million in Series D funding.

June 23, 2022

Akana by Perforce now offers BlazeMeter to customers, previously a solution with Broadcom Layer7.

June 23, 2022

Coder announced the release of a new open source project that gives developers and data scientists a consistent, secure, yet flexible way to create cloud workspaces in minutes.

June 23, 2022

GitGuardian is announcing a series of new features to address developer experience in securing the software development lifecycle.

June 22, 2022

OctoML released a major platform expansion to accelerate the development of AI-powered applications by eliminating bottlenecks in machine learning deployment.

June 22, 2022

Snow Software announced new functionality and integrations for Snow Atlas, a purpose-built platform that provides a framework to accelerate data-driven technology decision-making.